
Verification of SPL Feature Tree by Using
Bayesian Network

Supervised by

Dr. Shamim Hasnat Ripon

Chairperson and Associate Professor

Department of Computer Science and Engineering

Submitted by

Md. Javedul Ferdous

 and

 Md. Delwar Hossain

A Project submitted in partial fulfillment for the degree of B.Sc.
in Computer Science and Engineering

In the

Faculty of Science and Engineering

Department of Computer Science and Engineering

East West University

 May 2015

DECLARATION BY CANDIDATE

We hereby declare that the work presented in this thesis is, to the best of our knowledge and

belief, original, except as acknowledged in the text and that the material has not been submitted,

either in whole or in part, for a degree at this or any other university.

Md. Javedul Ferdous

Md. Delwar Hossain

Letter of Acceptance

I hereby declare that this thesis is from the student’s own work and effort, and all other sources

of information used have been acknowledged. This thesis has been submitted with my approval.

SUPERVISOR and CHAIRPERSON: Dr. Shamim Hasnat Ripon

SIGNATURE: ______________________________

DATE: ______________________________________

Abstract

Products with new features need to be introduced on the market in a prompt step and

organizations need to speed up their development process. Reuse has been suggested

as a solution, but to achieve effective reuse within an organization a planned and pre-

emptive effort must be used. Software Product lines are the most promising technique

and it increases productivity and software quality and decreases time-to-market. In

SPL, a feature tree shows various types of features and seizures the relationships

among them. Bayesian Network is gaining much interest in Software Engineering,

mainly in calculating software defects and software reliability. It can make notable

consequence on feature analysis & its component. This thesis applies BN in modeling

and analyzing features in a feature tree. Many feature analysis are modeled and

verified in Bayesian Network. The verification of the rules define the analysis rules &

its correctness. Finally a tool is used for reduced human error to make result more

efficient & precise.

Acknowledgements

First of all, we like to thank Almighty Allah for give us strength & proper knowledge

to complete our task and to submit our work as Thesis. We are really grateful to our

honorable chairperson & our supervisor Dr.Shamim Hasnat Ripon, Chairperson and

Associate Professor of Department of CSE, East West University for his guidance &

direction. He showing us the path to perform up to my potential and produce a good

research work. Without his help, it is not possible to complete our research work in

due time.

i

To the Father of Computer, Charles Babbage

ii

Contents

Acknowledgements i

1 Introduction

1.1 Motivation .

1.2 Objective

1.3 Contribution .

1.4 Outline .

1

1

2

2

2

2 Background
2.1 Software Product Line .

2.2 Feature Tree . .

2.3 Bayesian Network .

3

3

3

4

3 Cardinality Based SPL
3.1 Feature Model .

3.2 Cardinality .

3.3 Example of Case Study .

6

6

6

7

4 Feature Analysis
4.1 First Order Logic Predicates.

4.2 False Optional Feature.

4.3 Dead Feature.

9

9

10

12

5 Bayesian Representation

5.1 Bayesian Modeling

5.1.1 False Optional Feature .

5.1.2 Dead Feature.

5.2 Tool Representation .

14

14

14

26

34

6 Conclusion
6.1 Summary of the work. ..

6.2 Future Work.

37

38

38

7 Reference. 39

List of Figures

2.1 Feature of Feature Tree ……………………………………………………...... 3

2.2 BN Representation of a Feature Tree …………………………………............ 4

3.1 Graph Product Line …………………………………………………….……... 8

4.2.1 Feature Tree for FOF Rule 1…………………………………………….…….. 9

4.2.2 Feature Tree for FOF Rule 2…………………………………………….…….. 10

4.2.3 Feature Tree for FOF Rule 3…………………………………………….…….. 11

4.3.1 Feature Tree for DF Rule 1……………………………….…………….……... 12

4.3.2 Feature Tree for DF Rule 2……………………………..……………….…….. 13

5.1.1.1 Bayesian Network representation of FOF Rule 1 ……….……….…………… 14

5.1.1.2 NPT for False Optional Feature rule 1…………………………………….…... 15

5.1.1.3 Bayesian Network representation of FOF Rule 2 ……….……….……….…. 19

5.1.1.4 NPT for False Optional Feature rule 2………………………………….…….. 20

5.1.1.5 Bayesian Network representation of FOF Rule 3……….……….……….…… 23

5.1.1.6 NPT for False Optional Feature rule 3………………………………………... 24

5.1.2.1 Bayesian Network representation of DF Rule 1……….……….……….……. 27

5.1.2.2 NPT for dead feature rule 1…………………………………………………… 27

5.1.2.3 Bayesian Network representation of DF Rule 2……….……….……….…… 29

5.1.2.4 NPT for dead feature rule 2…………………………………………………… 30

5.2.1 FOF Rule 1 ………………………………………..…………….……….…… 34

5.2.2 NPT for FOF Rule 1 …………….……….……………………........................ 35

ii

5.2.3

Bar Chart for Dead Feature Rule 1…………………………………….……….

iii

35

5.2.4

Inconsistency ………………………………….……….……………………....

36

5.2.5

Bayesian representation in tools …………….……….……………………......

37

5.2.6

Bar Chart for Dead feature Rule 2 …………….……….……………………...

37

1

Chapter 1

Introduction

1.1 Motivation

Nowadays, systems are designed by composing existing components that have been used in other

systems in engineering discipline. Software engineering has been more focused on original

development but it is now recognized that to achieve better & flexible software, more quickly

and at lower cost, we need to adopt a design process that is based on systematic Software Reuse

[1]. It can be the whole of an application system either by incorporating it without change into

other systems or by developing application families. Basically, Software reuse use to reduce the

cost of software production by replacing creation with recycling [2].

Software engineers involves investments in requirements analysis, architecture and design,

documentation etc. which has been pressured to introduce new products and add functionality to

existing products at a rapid pace to be able to compete at the market[3]. Most organizations

today usually derive new systems from previous instances to speed up the process. But to reuse

similarities between systems in the most efficient way a product line approach might be the right

answer to an organization. The methodology uses a common set of core resources to modify,

assemble, instantiate, or generate multiple products and is devoted to as a product line. Such a

product line method includes building a product line as a product family [4].

Feature Models are a common language to represent Product Line Models which is describe the

features and their dependencies for creating valid products. One of the familiar issues of FMs is

that they may have defects that can significantly reduce the benefits of the product line approach.

Two of these defects are dead features and false optional features [5]. Dead features are features

absent from any valid product of the product line. False optional features are features declared as

optional but actually required in all valid products.

2

1.2 Objectives

The objective of this paper is to implement Bayesian Network to analyze the defects in SPL

feature models. This paper focuses on two specific analysis operations: false optional and dead

features of feature diagram which based on Cardinality based diagram [6, 7]. To reaching the

objective of our paper, we define several analysis rules for false optional and dead features by

using First Order Logic & represent these rules by using Bayesian Networks. At first, we define

BNs graphs to represent the scenarios of the analysis rules. Then we calculate Cumulative node

probability after node probability tables of the variable has defined. After getting the result, we

use a Bayesian network tools for verification. The calculated results & verification results match

our First Order Logic analysis rules.

1.3 Contribution

As we want to represent an uncertain domain, Bayesian networks are introduce the key computer

technology for dealing with probabilities in AI, where the nodes represent variables and arcs

represent direct connection between them [8,9,10,11]. Our focus is to represent Cardinality based

feature model & verify using tools to reduce human error where we use MSBNX as a tools.

MSBNX is a Microsoft Windows software application that supports the creation, manipulation

and evaluation of Bayesian probability models [5].

1.4 Outline

The entire report divided into 6 Chapter. In Chapter 1, it gives a short review of Software

product line, Reuse & Feature Constraint. Chapter 2 shows the feature tree and BN and an

example of feature tree of a Bayesian network. Chapter 3 covers Cardinality & its component.

Chapter4 defines First Order Logic based analysis rules of false optional and dead features.

Meanwhile, Chapter 5 models the analysis rules of Bayesian network & its probabilistic

calculation. Plus all rules are verified by tools in this Chapter. In conclusion, in Chapter 6 we

conclude the report by summarizing our contributions and outlining our future plans.

3

Chapter 2

Background

2.1 Software product line:

A software product line is a standard of software-demanding systems that share a mutual,

managed set of features satisfying the specific needs of a particular market segment or mission

which are developed from a common set of core assets in a prescribed way [12]. Software

product lines are emerging as a viable and important development paradigm allowing companies

to realize order-of-magnitude improvements in time to market, cost, productivity, quality, and

other business drivers. Software product line engineering can also allow fast market entry and

flexible response, and provide a capability for mass customization [3, 4].

2.2 Feature Tree:

A Feature Tree is a classified diagram that visually shows the features of a solution in groups of

increasing levels of detail. In the Feature Tree, some features may be flagged as mandatory,

some optional, and some as mutually exclusive [13]. Features may be further flagged for

development cycles, business priority, dependencies, or other relevant information. They are

most commonly used for planning the overall feature set of a single solution or product that will

be evolved over time or for defining the differing features that will be included in a product line

[14, 15].

 Figure 2.1: Feature of Feature Tree

Mandatory Feature

Optional Feature

Alternative Feature

Or Feature

 Parent Child

Parent Child

Parent

Child 1 Child 2

 Parent

Child 1 Child 2

4

2.3 Bayesian Network

Bayesian Network is one kind graphical representation which using cumulative probability

distribution to make set of graph & make a relation with each node by arrow Assuming discrete

variables, the strength of the relationship between variables is quantified by conditional

probability distributions associated with each node [6]. The only constraint on the arcs allowed

in a BN is that there must not be any directed cycles. In addition, BNs model the quantitative

strength of the connections between variables, allowing probabilistic beliefs about them to be

updated automatically as new information becomes available [8,9,10,11].

Example of Bayesian Network

A Bayesian network represents a set of random variables and their conditional dependencies via

a graph. The nodes in a Bayesian network represent a set of random variables,

𝑋 = X1 …… X𝑖 ……X𝑛 from the domain. A set of directed arcs (or links) connects pairs of nodes,

𝑋𝑖 → X𝑗 , representing the direct dependencies between variables [10].

Figure 2.2: BN Representation of a Feature Tree

v

y

x

Feature Tree Bayesian Network

v

y x

5

Figure 2.2 illustrates a Bayesian network. Its set of edges isE = {(v, x), (v, y)} . This constitutes

a DAG because there are no undirected edges and there are no cycles. Furthermore, since x and y

are conditionally independent of each other, so we can following: 𝑃 𝑥 𝑣, 𝑦 = 𝑃 𝑥 𝑣 ,which

means that, for the factorization represented by the Bayesian Network, the probability of x is

conditioned only v and that the value of c is irrelevant for this local probability. Likewise, we

can say 𝑃 𝑦 𝑥, 𝑣 = 𝑃(𝑦|𝑣) . The edges in the Bayesian network encode a particular

factorization of the joint distribution [9]. In this example, the joint distribution of all variables, as

factorized by this Bayesian network is,

𝑃 𝑥, 𝑣, 𝑦 = 𝑃 𝑥 𝑣 𝑃(𝑣)𝑃(𝑦|𝑣)

In general, given nodes 𝐴 = 𝐴1 …… . . , 𝐴𝑛 the joint probability function for any Bayesian

Network is

𝑃 𝐴 = 𝑃(𝐴𝑖 |𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐴𝑖))

𝑛

𝑖=1

6

Chapter 3

Cardinality Based SPL

3.1 Feature Model

A feature model is organized a set of features and makes a relationships between a parent feature

and its child features which are important distinguishing characteristics, qualities, or features of a

family of systems [6]. They are making a graphical illustration of a particular system using

parent-child relation, rending the shared structure and behavior of a set of similar systems. All

the various features of a set of similar/related systems are needed to compose into a feature

model [15]. These entire features are grouped with cardinality where Cardinality can be defined

with lower bound & upper bound. Lower bound indicates the minimum feature that can be

selected within group cardinality. On the Contrast, Upper bound indicates the maximum feature

that can be selected within group cardinality.

3.2 Cardinality

The concept of group cardinality was generalized in as a set of features annotated with a

cardinality specifying an interval of how many features can be selected from that set [16 a

feature cardinality specification may consist of a sequence of intervals [18].Features can be

annotated with cardinalities, such as <1. ∗> or <3, 3>. Mandatory and optional features can be

considered special cases of features with the cardinalities <1, 1> and <0, 1>, respectively.

Feature cardinalities were motivated by a practical application. Furthermore, group cardinality is

a property of the relationship between a parent and a set of sub features. Basically, Cardinality-

based feature modeling integrates a number of extensions to the original Feature-Oriented

Domain Analysis notation [14].

7

A cardinality-based feature model is an order of features, where each feature has feature

cardinality. A feature cardinality is an interval of the form <m, n>, where m ∈Z ∧n ∈Z ∪ {∗} ∧0

≤ m ∧ (m ≤ n ∨n = ∗) [17].More precisely, a feature cardinality is attached to the relationship

between a solitary feature and its parent [14, 17]. Note that we allow a feature cardinality to have

as an upper bound the Kleene star *. Such an upper bound denotes the possibility to take a

feature an unbounded number of times. An example of a valid specification of a feature

cardinality with more than one interval is [0...2], [6...6], which says that we can take a feature 0,

1, 2 or 6 times. Note that we allow the last interval in a feature cardinality to have as an upper

bound the Kleene star ∗. Such an upper bound denotes the possibility to take a feature an

unbounded number of times. For example, the feature cardinality [1...2], [7...∗] requires that the

associated feature is taken 1, 2, 5, or any number greater than 7 times. Semantically, the feature

cardinality ε is equivalent to [0...0] and implies that the sub feature can never be chosen in a

configuration. Additionally, features can be arranged into feature groups, where each feature

group has group cardinality. Group cardinality <m, n>of a group is an interval with n as lower

bound and n′ as upper bound. Given that k >0 is the number of grouped features in the group, we

assume that the following invariant holds: 0 ≤ n ≤ n′ ≤ k. Group cardinality denotes how many

group members can be selected. For example, at least and at most one of the features Credit

Card, Debit Card, and Purchase Order must be selected as a sub feature of Payment Type [14].

3.3 Example of Case Study

We used Graph Product Line as running example because it is well-known in the product line

community, and it was proposed to be a standard case for evaluating product line methodologies.

We used 9 artificial features to produce these defects. We identified artificial features with a

capital AF. In addition, we identified original features of the model with their names. The

members of the GPL are graphs either Directed or Undirected, their edges are Weighted or

Unweighted, and their search algorithms are breadth-first search (BFS) or depth-first search

(DFS).

8

Figure 3.1: Graph Product Line

GPL

Algorithm
AF5

Graph

Type

Type

BFS DFS

AF1

AF4 AF3 AF2

AF6

AF7

AF8

AF9

Weighted Directed

<1,2>

<1,1

>

<1,1>

9

Chapter 4

Feature Analyses

4.1 First Order Logic Predicates

To implement our earlier work on logical representation of feature model and their analysis

rules, we represent in this section a set of rules for dead and false optional features based on

group of Cardinality [6, 7, 13].We use the following First Order Logic (FOL) predicates to

define the rules.

 Variation point (v): This predicate indicates that feature v is a variation Point, i.e.,

feature v has child feature(s).

 Mandatory variant (v, x): This predicate indicates that feature x is a mandatory Feature

of feature v, i.e., x is a mandatory child of v.

 Optional variant (v, x): Here, x is an optional feature of v.

 Requires(x, y): It indicates that feature x requires feature y.

 Exclude(x,y): This predicate indicates that feature x and y are mutually exclusive.

 Select(x): Variant x is selected in the configuration.

10

4.2 False Optional Feature

Rule 1

Figure 4.2.1: Feature Tree for FOF Rule 1

First Order Logic:

∀𝑣,𝑓,𝑥,𝑦,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟y_variant˄𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡(𝑓)^optional_𝑣𝑎𝑟𝑖𝑎n𝑡(

𝑥)^optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑦)^optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑧)^𝑑𝑒𝑎𝑑_f𝑒𝑎𝑡𝑢𝑟𝑒(𝑥)˄𝑑𝑒𝑎𝑑_f𝑒𝑎𝑡𝑢𝑟𝑒(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑓)

⇒¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)˄¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑧).

Rule 2

Figure 4.2.2: Feature Tree for FOF Rule 2

11

First Order Logic:

∀𝑣,𝑓,𝑥,𝑦,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟y_variant(f)^v𝑎𝑟𝑖𝑎𝑛𝑡ion_𝑝𝑜𝑖𝑛𝑡(𝑓)^optional_𝑣𝑎𝑟𝑖𝑎

n𝑡(𝑥)^optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑦)˄optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑧)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑓)⇒¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑧)

Rule 3

Figure 4.2.3: Feature Tree for FOF Rule 3

First Order Logic:

∀𝑣,x,y,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)^𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟y_variant(𝑥)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟y_variant

^ variation_point (𝑦)˄optional_𝑣𝑎𝑟𝑖𝑎n𝑡 (𝑧)˄optional_𝑣𝑎𝑟𝑖𝑎n𝑡 (𝑤)˄𝑒𝑥𝑐𝑙𝑢𝑑𝑒(𝑥,𝑧)

˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)⇒¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑧)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑤).

12

4.3 Dead Feature

Rule 1

 Figure 4.3.1: Feature Tree for DF Rule 1

First Order Logic:

∀𝑣,𝑓,𝑥,𝑦,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑥)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑤)

˄𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑦)˄𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑧)˄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑥,𝑦)

˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)⇒𝑠𝑒𝑙𝑒𝑐𝑡(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑤)¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑧).

13

Rule 2

 Figure 4.3.2: Feature Tree for DF Rule 2

First Order Logic:

∀𝑣,𝑓,𝑥,𝑦,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑓)˄optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑥)˄optional_𝑣𝑎𝑟𝑖

𝑎n𝑡(𝑧)˄𝑑𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑦)˄exclude(x,y)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑓)⇒𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)˄¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑧).

14

Chapter 5

Bayesian Representation

5.1 Bayesian Modeling

After analyzing the scenarios for false optional and dead features, we define Bayesian Network

representation of the scenarios. The key factor in defining the BN presentation is to identify the

dependencies among the features. Our BNs are influenced by our logical representation shown I

figure.

5.1.1 False Optional Feature:

An optional feature that constantly belongs to a mandatory feature is known a False Optional

Feature [6].

Rule 1:

False Optional, Rule 1:One or more feature(s) become(s) false optional when it is (they are)

grouped by a group cardinality with (with a mandatory father) having lower bound of “m” and

upper bound of “n” & m≠n and [k-n] dead feature within the cardinality where “k” is the total

number of features inside the group cardinality.

In the BN above, feature x, y, z are three variants of the variation point “f” and feature “f” is a

variant of the variation point v. Thus the probability of features x, y, z being selected are directly

dependent on whether v and f is selected or not. Additionally f is dependent on v.

 Feature Tree Bayesian Network

Figure 5.1.1.1: Bayesian Network representation of FOF Rule 1

15

v f x y z

T F

1 0

v T F

T 1 0

F 0 1

F T F

T 0 1

F 0 1

f T F

T 0 1

F 0 1

f T F

T 1 0

F 0 1

Figure 5.1.1.2: NPT for False Optional Feature rule 1

From figure, based on the lower bound and upper bound of the group cardinality we can see that after

“f” is selected. There are 3𝑐2 + 3𝑐1 = 6 possible combinations of feature from the group cardinality.

Combination 1 x

Combination 2 y

Combination 3 z

Combination 4 xy

Combination 5 yz

Combination 6 zx

For combination 1,

𝑃 𝑥, 𝑓 = 𝑃 𝑥 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

 𝑝 𝑥 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑥 = 𝑇, 𝑓 = 𝑇)

𝑝(𝑓 = 𝑇)

 =
 𝑃 𝑥=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

16

 = 0* 1 * 1 = 0

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

 =0 * 0 * 0 = 0

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 = 1

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0

Thus combination 1 is an invalid combination for this scenario.

For combination 2

 𝑃 𝑦, 𝑓 = 𝑃 𝑦 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑦 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)

 =
 𝑃 𝑦=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑦=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑦=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)

∴ 𝑃 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 0* 1 * 1 = 0

17

∴ 𝑃 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

 = 0 * 0 * 0 = 0

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 = 1

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0

Thus combination 2 is an invalid combination for this scenario.

For Combination 3

P 𝑧, 𝑓 = 𝑃 𝑧 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑧 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)

 =
 𝑃 𝑧=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑧=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑧=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)

∴ 𝑃 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 * 1 = 1

∴ 𝑃 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

18

 =1 * 0 * 0 = 0

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 = 1

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 =
1 + 0

1 + 0
= 1

Thus combination 3 is a valid combination for this scenario.

For combination 4

𝑃 𝑥, 𝑦, 𝑓 = 𝑃 𝑥, 𝑦 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

𝑃 𝑥 = 𝑇, 𝑦 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)

 =
 𝑃 𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
 𝑃 𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇

 𝑃(𝑦 = 𝑇|𝑓 = 𝑇) 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 0 * 0 * 1 = 0

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇

𝑃(𝑦 = 𝑇|𝑓 = 𝑇)𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

 = 0 * 0 * 0 = 0

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

19

 = 1 * 1 = 1

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0

Thus combination 4 is an invalid combination for this scenario.

Similarly it can be shown that combination 5 and combination 6 are also invalid for this scenario

making “z” a false optional feature.

Rule 2:

False Optional, Rule 2:One or more feature(s) becomes false optional when it is (they are)

grouped by a group cardinality with (with a mandatory father) having lower bound of “m” is

equal or greater than upper bound of “n” and [k-m] dead feature within the cardinality where “k”

is the total number of features inside the group cardinality.

In the Bayesian Network above, feature x,y,z are three variants of the variation point “f” and feature

“f” is a variant of the variation point “v”. Thus the probability of features x,y,z being selected are

directly dependent on whether “v” and “f” is selected or not. Then “f” is dependent on “v”.

Feature Tree Bayesian Network

Figure 5.1.1.3: Bayesian Network representation of FOF Rule 2

20

v F x y z

T F

1 0

v T F

T 1 0

F 0 1

f T F

T 0 1

F 0 1

f T F

T 1 0

F 0 1

f T F

T 1 0

F 0 1

Figure 5.1.1.4: NPT for False Optional Feature rule 2

From figure, the lower bound and upper bound of the group cardinality after f is selected. There

is 3𝑐2 = 3 possible combination of feature from the group cardinality.

Combination 1 xy

Combination 2 yz

Combination 3 zx

For combination 1:

𝑃 𝑥, 𝑦, 𝑓 = 𝑃 𝑥, 𝑦 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

𝑃 𝑥 = 𝑇, 𝑦 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)

 =
 𝑃 𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇

= 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃(𝑦 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 0 * 1 * 1 = 0

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹

= 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃(𝑦 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

21

 = 0 * 1 * 0*0 = 0

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 = 1

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0

Thus combination 1 is an invalid combination for this scenario.

For combination 2:

𝑃 𝑦, 𝑧, 𝑓 = 𝑃 𝑦, 𝑧 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

𝑃 𝑦 = 𝑇, 𝑧 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑦 = 𝑇, 𝑧 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)

 =
 𝑃 𝑦=𝑇,𝑧=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑦=𝑇,𝑧=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑦=𝑇,𝑧=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)

∴ 𝑃 𝑦 = 𝑇, 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 𝑃(𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 * 1 = 1

∴ 𝑃 𝑦 = 𝑇, 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 𝑃(𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

 =1* 1 * 0*0 = 0

22

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 = 1

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

𝑝 𝑦 = 𝑇, 𝑧 = 𝑇 𝑓 = 𝑇 =
1 + 0

1 + 0
= 1

Thus combination 2 is a valid combination for this scenario.

For combination 3:

𝑃 𝑧, 𝑥, 𝑓 = 𝑃 𝑧, 𝑥 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

𝑃 𝑧 = 𝑇, 𝑥 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑧 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)

 =
 𝑃 𝑧=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑧=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑧=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)

∴ 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃(𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1*0*1 * 1 = 0

∴ 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃(𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

 = 1 * 0 * 0 * 0 = 0

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 = 1

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

23

𝑃 𝑧 = 𝑇, 𝑥 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0

Thus combination 3 is an invalid combination for this scenario.

Rule 3:

False Optional, Rule 3: An optional feature becomes false optional when it is connected with a

mandatory father by alternative relation. In the following graph x and y are mandatory feature.

Feature x exclude feature z which is alternate with feature w. Feature z will be dead feature for

exclude.

In alternate relation, only one feature can be selected. So w will be false optional. In the Bayesian

Network above, both x and y are two variants of the variation point v. z is a variant of variation

point x and y. w also a variant of variation point y.

 Feature Tree Bayesian Network

Figure 5.1.1.5: Bayesian Network representation of FOF Rule 3

24

The NPT of these features are given below

v x y z W

T F

1 0

v T F

T 1 0

F 0 1

v T F

T 1 0

F 0 1

x y T F

T T 0 1

T F I I

F T I I

F F 0 1

y T F

T 1 0

F 0 1

Figure 5.1.1.6: NPT for False Optional Feature rule 3

For feature Z,

 𝑃 𝑧, 𝑥, 𝑦 = 𝑃 𝑧 𝑥, 𝑦 𝑃 𝑥 𝑣 𝑃 𝑦 𝑣 𝑃 𝑣

 𝑃(𝑧 = 𝑇|𝑥 = 𝑇, 𝑦 = 𝑇) =
𝑃(𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇)

𝑃(𝑥 = 𝑇, 𝑦 = 𝑇)

=
 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓 = 𝑇, 𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 + 𝑃(𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹)

𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 + 𝑃(𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹)

∴ 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇

= 𝑃 𝑧 = 𝑇 𝑥 = 𝑇, 𝑦 = 𝑇 𝑃 𝑥 = 𝑇 𝑣 = 𝑇 𝑃 𝑦 = 𝑇 𝑣 = 𝑇 𝑃(𝑣 = 𝑇)

 = 0 ∗ 1 ∗ 1 ∗ 1 = 0

∴ 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹

= 𝑃 𝑧 = 𝑇 𝑥 = 𝑇, 𝑦 = 𝑇 𝑃 𝑥 = 𝑇 𝑣 = 𝐹 𝑃 𝑦 = 𝑇 𝑣 = 𝐹 𝑃(𝑣 = 𝐹)

25

 = 0 ∗ 0 ∗ 0 ∗ 0 = 0

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑣 = 𝑇 𝑃 𝑦 = 𝑇 𝑣 = 𝑇 𝑃(𝑣 = 𝑇)

 = 1 ∗ 1 ∗ 1 = 1

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑣 = 𝐹 𝑃 𝑦 = 𝑇 𝑣 = 𝐹 𝑃(𝑣 = 𝐹)

 = 0 ∗ 0 ∗ 0 = 0

𝑃 𝑧 = 𝑇 𝑥 = 𝑇, 𝑦 = 𝑇 =
0 + 0

1 + 0
= 0

Thus z is an invalid combination for this scenario.

For feature W,

 𝑃 𝑤, 𝑦 = 𝑃 𝑤 𝑦 𝑃 𝑦 𝑣 𝑃 𝑣

 𝑃(𝑤 = 𝑇|𝑦 = 𝑇) =
𝑃(𝑤 = 𝑇, 𝑦 = 𝑇)

𝑃(𝑦 = 𝑇)

=
 𝑃 𝑤 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓 = 𝑇, 𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑤 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 + 𝑃(𝑤 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹)

𝑃 𝑦 = 𝑇, 𝑣 = 𝑇 + 𝑃(𝑦 = 𝑇, 𝑣 = 𝐹)

∴ 𝑃 𝑤 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑤 = 𝑇 𝑦 = 𝑇 𝑃 𝑦 = 𝑇 𝑣 = 𝑇 𝑃(𝑣 = 𝑇)

 = 1 ∗ 1 ∗ 1 = 1

∴ 𝑃 𝑤 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑤 = 𝑇 𝑦 = 𝑇 𝑃 𝑦 = 𝑇 𝑣 = 𝐹 𝑃(𝑣 = 𝐹)

 = 1 ∗ 0 ∗ 0 = 0

∴ 𝑃 𝑦 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑣 = 𝑇 𝑃(𝑣 = 𝑇)

26

 = 1 ∗ 1 = 1

∴ 𝑃 𝑦 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑣 = 𝐹 𝑃(𝑣 = 𝐹)

 = 0 ∗ 0 = 0

 𝑃 𝑤 = 𝑇 𝑦 = 𝑇 =
1 + 0

1 + 0
= 1

Thus w is a valid combination for this scenario

5.1.2 Dead Feature:

An optional feature that never gets selected in a valid product is known a Dead Feature [6].

Rule 1:

Dead Feature, Rule 1: An optional feature becomes dead if it belongs to group cardinality and

the number of false optional feature is equal to the cardinality upper bound. In the following

graph feature y and z connected with <1,1> group cardinality. x is a mandatory feature which

requires y where y is a optional feature. This results into y being a false optional feature. Since

upper bound is 1, y alone can be selected. Thus z is dead feature.

In the Bayesian network above , feature x,y,z,w are the four variant of the variation point v.Thus

the probability of these variant feature being selected are directky depend on whether v is

selected or not. Then x is only dependent on v but the probability of y being selected is also

dependent on whether x is selected or not.Also w is only dependent on v . But z is dependent on

whether z is selected or not.Hense both y and z are simultaneously dependent on (v,x) and (v,w).

27

 Feature Tree Bayesian Network

Figure 5.1.2.1: Bayesian Network representation of DF Rule 1

The NPT are given below

v X y z w

T F

1 0

v T F

T 1 0

F 0 1

v X T F

T T 1 0

T F I I

F T I I

F F 0 1

v T F

T 0 1

F 0 1

v T F

T 1 0

F 0 1

Figure 5.1.2.1: NPT for dead feature rule 1

For Feature Y :

𝑃 𝑦, 𝑥 = 𝑃 𝑦 𝑥 𝑃 𝑓 𝑣 𝑃(𝑣)

𝑃 𝑦 = 𝑇 𝑥 = 𝑇 =
𝑃(𝑦 = 𝑇, 𝑥 = 𝑇)

𝑃(𝑥 = 𝑇)

 =
 𝑃 𝑦=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

28

 =
𝑃 𝑦=𝑇,𝑥=𝑇,𝑣=𝑇 +𝑃(𝑦=𝑇,𝑥=𝑇,𝑣=𝐹)

𝑃 𝑥=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑣=𝐹)

∴ 𝑃 𝑦 = 𝑇, 𝑥 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇 𝑃 𝑥 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 * 1 = 1

∴ 𝑃 𝑦 = 𝑇, 𝑥 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇 𝑃 𝑥 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

 =1 * 0 * 0 = 0

∴ 𝑃 𝑥 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 = 1

∴ 𝑃 𝑥 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

𝑃 𝑦 = 𝑇 𝑥 = 𝑇 =
1 + 0

1 + 0
= 1

Thus y is a valid combination for this scenario.

For feature Z:

𝑃 𝑧, 𝑤 = 𝑃 𝑧 𝑤 𝑃 𝑤 𝑣 𝑃(𝑣)

𝑃 𝑧 = 𝑇 𝑤 = 𝑇 =
𝑃(𝑧 = 𝑇, 𝑤 = 𝑇)

𝑃(𝑤 = 𝑇)

 =
 𝑃 𝑧=𝑇,𝑤=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑧=𝑇,𝑤=𝑇,𝑣=𝑇 +𝑃(𝑧=𝑇,𝑤=𝑇,𝑣=𝐹)

𝑃 𝑤=𝑇,𝑣=𝑇 +𝑃(𝑤=𝑇,𝑣=𝐹)

∴ 𝑃 𝑧 = 𝑇, 𝑤 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑧 = 𝑇 𝑤 = 𝑇 𝑃 𝑤 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 0* 1 * 0 = 0

29

∴ 𝑃 𝑧 = 𝑇, 𝑤 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑧 = 𝑇 𝑤 = 𝑇 𝑃 𝑤 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

 = I * 0 * 0 = 0

∴ 𝑃 𝑤 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑤 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 0* 0 = 0

∴ 𝑃 𝑤 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑤 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

 𝑃 𝑧 = 𝑇 𝑤 = 𝑇 =
0 + 0

1 + 0
= 0

Thus z is an invalid combination for this scenario.

Rule 2:

Dead Feature, Rule 2: A feature within group cardinality becomes a dead feature when it is

excluded by another feature inside the cardinality. In the Bayesian Network above, feature x,y,z

are three variants of the variation point “f” and feature “f” is a variant of the variation point “v”.

Probability of x and z are directly dependent on f is selected or not but y is dependent on both x

and f. The NPT of these feature are given below.

 Feature Tree Bayesian Network

Figure 5.1.2.3: Bayesian Network representation of DF Rule 1

30

v f x y Z

T F

1 0

v T F

T 1 0

F 0 1

f T F

T 1 0

F 0 1

f x T F

T T 0 1

T F I I

F T I I

F F 0 1

f T F

T 1 0

F 0 1

Figure 5.1.2.4: NPT for dead feature rule 2

From figure, the lower bound and upper bound of the group cardinality after f is selected. There

is 3𝑐2 = 3 possible combination of feature from the group cardinality.

Combination 1 xy

Combination 2 yz

Combination 3 zx

For feature x,

𝑃 𝑥, 𝑓 = 𝑃 𝑥 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

𝑃 𝑥 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑥 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)

 =
 𝑃 𝑥=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

31

 = 1* 1 * 1 = 1

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

 =1 * 0 * 0 = 0

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 = 1

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 =
1 + 0

1 + 0
= 1

Thus x is an invalid combination for this scenario.

For feature y,

 𝑃 𝑦, 𝑥, 𝑓 = 𝑃 𝑦 𝑥, 𝑓 𝑃 𝑥 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

 𝑃 𝑦 = 𝑇 𝑥 = 𝑇 =
𝑃(𝑦 = 𝑇, 𝑥 = 𝑇)

𝑃(𝑥 = 𝑇)

 =
 𝑃 𝑦=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑦=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑦=𝑇,𝑥=𝑇,𝑓=𝐹,𝑣=𝐹)

𝑃 𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑓=𝐹,𝑣=𝐹)

∴ 𝑃 𝑦 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇, 𝑓 = 𝑇

32

𝑃(𝑥 = 𝑇|𝑓 = 𝑇)𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 0* 1 * 1*1 = 0

∴ 𝑃 𝑦 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝐹, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇, 𝑓 = 𝐹

𝑃(𝑥 = 𝑇|𝑓 = 𝐹)𝑃 𝑓 = 𝐹 𝑣 = 𝐹 𝑃 𝑣 = 𝐹

 = I *0 * 0 * 0 = 0

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃(𝑥 = 𝑇|𝑓 = 𝑇)𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1* 1 * 1 = 1

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝐹, 𝑣 = 𝐹 = 𝑃(𝑥 = 𝑇|𝑓 = 𝐹)𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0*1* 0 = 0

 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0

Thus y is a valid combination for this scenario.

For Combination 3

 𝑃 𝑧, 𝑓 = 𝑃 𝑧 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣)

 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑧 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)

 =
 𝑃 𝑧=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 =
𝑃 𝑧=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑧=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)

∴ 𝑃 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

33

 = 1 * 1 * 1 = 1

∴ 𝑃 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓

 =1 * 0 * 0 = 0

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇

 = 1 * 1 = 1

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓

 = 0 * 0 = 0

 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 =
1 + 0

1 + 0
= 1

Thus z is an invalid combination for this scenario.

Now for combination 1

𝑥𝑦 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 ∗ 𝑃 𝑦 = 𝑇 𝑥 = 𝑇

 = 1 ∗ 0 = 0

 Feature xy is not selected.

Now for combination 2

𝑦𝑧 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇 ∗ 𝑃 𝑧 = 𝑇 𝑥 = 𝑇

 = 0 ∗ 1 = 0

 Feature yz is not selected.

Now for combination 3

𝑧𝑥 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 ∗ 𝑃 𝑥 = 𝑇 𝑓 = 𝑇

34

 = 1 ∗ 1 = 1

 Feature zx is selected.

Thus, y becomes a dead feature.

5.2 Tool Representation

To represent the vertices, or nodes, the variables and the edges or arcs, the conditional dependencies

we use MSBNX as a tools. MSBNX is a Microsoft Windows software application that supports the

creation, manipulation and evaluation of Bayesian probability models one of the primary roles of a

Bayesian model is to allow the model creator to use commonsense and real-world knowledge to

eliminate needless complexity in the model. The method used to remove meaningless relationships in a

Bayesian model is to explicitly declare the meaningful ones.

Figure 5.2.1: FOF Rule 1

These influences are represented by conditioning arcs between nodes. Each arc should represent

a causal relationship between temporal antecedents. Basically it is a graphical representation of

Bayesian Networks.We injects Boolean '0' and „1‟ to each node regarding their dependency on

vertices to vertices&represent truth table a below.

35

Figure 5.2.2: NPT for FOF Rule 1

After setting the value on to the nodes , we take it to the “Inference Evaluation” for execution.

Then it shows a graphical representation of whole model.

Figure 5.2.3: Bar Chart for FOF Rule 1

36

Figure shows that if v is varient of full manadory feature f , then z will be false optional feature

where x&y feature are dead feature. We represent our all rules by following procedure & get the

result which is equal to the result of Bayesian Networks.

Inconsistency: A model or system can be say that i it‟s consist inconsistency if it has any kind of

anomaies that it shouldn’t occur.To represent all rules in tools we found some inconsistency

where by following procedure ,

Suppose, we are considering a scenario where v is root, f is the decender of v&z is the decender

of f.If z is selected then f has to selested as well as v

We can get two kind of situation.

1) z is selected but f is not selected

2) z is selected but v is not selected

Figure: Situation 1 Figure: Situation 2

Figure 5.2.4: Inconsistency

If either one of this occur on the model then it will face inconsistency on the model. Basically

inconsistency is one kind of anomalies in system that are rarely happen .

As usual we represent inconsistencyin the way we represent following rules.

37

Let‟s a have demonstration in Dead Feature, Rule 2. First, we take the portion of model where

inconsistency exists.

Figure 5.2.5: Bayesian representation in tools

Then, set the truth value regarding dependency on each node and set YES to „0‟ & NO to „1‟ for

in y nodes for inconsistency.

When we evaluate the graphical representation of the output for Bar chart, it shows itswhich

node is selected having inconsistency.

Figure 5.2.2: Bar Chart for Dead feature Rule 2

38

Chapter 6

Conclusion

6.1 Summery

This thesis presented an approach to defining and verifying software product line feature analysis

rules by using Bayesian Networks. Our primary object was to define a set of rules for both dead

and false optional features based on Cardinality based. Bayesian Network is used to model and

verify the analysis rules. In association to our earlier work on applying First order logic, we

represent them into Feature Diagram. To be able to know whether product lines are the right

approach for Feature diagram or not, we represent it in Bayesian Network using cumulative node

probability. After all this suggested work, we verify result in tools to check whether the result is

valid or not.

6.2 Future Work

As we work with only two anomalies of feature model, we like to work with other anomalies &

take those anomalies into some rules. We also interested in using probability in those rules.

Other anomalies are

1. Conditionally dead feature

2. Wrong cardinality

3. Redundancy

39

References

[1] Ian Somerville, “Software Reuse”, Based on Software Engineering, 7
th

 Edition.

[2] YijunYu, “Software Reuse”, lecture 8, 2005.

[3] Caroline Nyholm, “Product Line Development – an Overview”, Department of Computer

 Science, Mälardalen University, Vasteras, Sweden.

[4] A. Chaudhary, B. K. Verma, J.L. Raheja, “Product Line Development Architectural Model”,

 In proceedings of the 3rd IEEE International Conference on Computer Science and

 Information Technology, China, 9-11 July, 2010, pp.749-753.

[5] L. Rincón, G. Giraldo, R. Mazo and C. Salinesi, “An Ontological Rule-Based Approach for

 Analyzing Dead and False Optional Features in Feature Models”, Electronic Notes in

 Theoretical Computer Science (ENTCS), Volume 302, February, 2014 Pages 111-132.

[6] Musfiqur Rahman and Shamim Ripon, “Using Bayesian Networks to Model and Analyze

 Software Product Line Feature Model”, in book Multi-disciplinary Trends in Artificial

 Intelligence, LNCS 8875, pp. 220-231, 2014, Springer International Publishing, DOI:

 10.1007/978-3-319-13365-2_20.

[7] Shamim Ripon, Sk. Jahir Hossain, Keya Azad and Meheedi Hassan, “Modeling and Analysis

 of Product Line Variants”, International Workshop on Requirements Engineering Practices

 on Software Product Line Engineering (REPOS 2012), In conjunction with SPLC'12.

 (ACM).

40

[8] N Fenton, M Neil, and D Marquez, “Using Bayesian networks to predict software defects

 and reliability”, Department of Computer Science, Queen Mary, University of London,

 London, UK, DOI:10.1243/1748006XJRR161.

[9] Todd A. Stephenson, “An Introduction to Bayesian Network Theory and Usage”, IDIAP-

 RR-00-03,Dalle molle institute for Perceptual Artificial Intelligence, Martigny, Valais,

 Switzerland.

 [10] Kevin B. Korb and Ann E. Nicholson, “Introducing Bayesian Networks”, CRC Press,

 Monash University, Clayton, Victoria 3800 Australia.

[11] Ben-Gal I., “Bayesian Networks”, in Ruggeri F., Faltin F. & Kenett R., Encyclopedia of

 Statistics in Quality & Reliability, Wiley & Sons (2007).

[12] Ingolf H. Kr¨uger, Reena Mathew ,Michael Meisinger ,”From Scenarios to Aspects:

 Exploring Product Lines”,Department of Computer Science University of California, San

 Diego La Jolla, CA 92093-0114, USA.

[13] Don Batory, “Feature Models, Grammars, and Propositional Formulas”, Department of

 Compute Sciences, University of Texas at Austin, Austin, Texas 78712.

[14] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker, “Formalizing Cardinality-

 based Feature Models and their Specialization”, University of Waterloo, Canada, University

 of Applied Sciences Kaiserslautern, Zweibr¨ucken, Germany.

[15] Ebrahim Bagheri, Faezeh Ensan, Dragan Gasevic and Marko Boskovic, “Modular Feature

 Models: Representation and Configuration”, Journal of Research and Practice in Information

 Technology (Australian Computer Journal) 43(2):109-140.

41

[16] Clément Quinton, Daniel Romero, and Laurence Duchien., “Cardinality-Based Feature

 Models With Constraints: A Pragmatic Approach”, SPLC - 17th International Software

 Product Line Conference –2013, Aug 2013, Tokyo, Japan. PP.162-166, 2013.

[17] Czarnecki, K., and C H P. Kim, “Cardinality-based feature modeling and constraints: a

 progress report”, International Workshop on Software Factories at OOPSLA‟05, San

 Diego, California, USA.

[18] Krzysztof Czarnecki, Simon Helsen, Ulrich Eisenecker , “Staged Configuration Using

 Feature Models”, Software Product LinesLecture Notes in Computer Science Volume 3154,

 2004, pp 266-283.

	page3
	page5
	page7
	page9
	page11

