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Abstract 

Products with new features need to be introduced on the market in a prompt step and 

organizations need to speed up their development process. Reuse has been suggested 

as a solution, but to achieve effective reuse within an organization a planned and pre-

emptive effort must be used. Software Product lines are the most promising technique 

and it increases productivity and software quality and decreases time-to-market. In 

SPL, a feature tree shows various types of features and seizures the relationships 

among them. Bayesian Network is gaining much interest in Software Engineering, 

mainly in calculating software defects and software reliability. It can make notable 

consequence on feature analysis & its component. This thesis applies BN in modeling 

and analyzing features in a feature tree. Many feature analysis are modeled and 

verified in Bayesian Network. The verification of the rules define the analysis rules & 

its correctness. Finally a tool is used for reduced human error to make result more 

efficient & precise. 
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Chapter 1  

Introduction 

1.1 Motivation 

Nowadays, systems are designed by composing existing components that have been used in other 

systems in engineering discipline. Software engineering has been more focused on original 

development but it is now recognized that to achieve better & flexible software, more quickly 

and at lower cost, we need to adopt a design process that is based on systematic Software Reuse 

[1]. It can be the whole of an application system either by incorporating it without change into 

other systems or by developing application families. Basically, Software reuse use to reduce the 

cost of software production by replacing creation with recycling [2].  

Software engineers involves investments in requirements analysis, architecture and design, 

documentation etc. which has been pressured to introduce new products and add functionality to 

existing products at a rapid pace to be able to compete at the market[3]. Most organizations 

today usually derive new systems from previous instances to speed up the process. But to reuse 

similarities between systems in the most efficient way a product line approach might be the right 

answer to an organization. The methodology uses a common set of core resources to modify, 

assemble, instantiate, or generate multiple products and is devoted to as a product line. Such a 

product line method includes building a product line as a product family [4]. 

Feature Models are a common language to represent Product Line Models which is describe the 

features and their dependencies for creating valid products. One of the familiar issues of FMs is 

that they may have defects that can significantly reduce the benefits of the product line approach. 

Two of these defects are dead features and false optional features [5]. Dead features are features 

absent from any valid product of the product line. False optional features are features declared as 

optional but actually required in all valid products. 
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1.2 Objectives 

The objective of this paper is to implement Bayesian Network to analyze the defects in SPL 

feature models. This paper focuses on two specific analysis operations: false optional and dead 

features of feature diagram which based on Cardinality based diagram [6, 7]. To reaching the 

objective of our paper, we define several analysis rules for false optional and dead features by 

using First Order Logic & represent these rules by using Bayesian Networks. At first, we define 

BNs graphs to represent the scenarios of the analysis rules. Then we calculate Cumulative node 

probability after node probability tables of the variable has defined. After getting the result, we 

use a Bayesian network tools for verification. The calculated results & verification results match 

our First Order Logic analysis rules. 

 

 

1.3 Contribution 

 

As we want to represent an uncertain domain, Bayesian networks are introduce the key computer 

technology for dealing with probabilities in AI, where the nodes represent variables and arcs 

represent direct connection between them [8,9,10,11]. Our focus is to represent Cardinality based 

feature model & verify using tools to reduce human error where we use MSBNX as a tools. 

MSBNX is a Microsoft Windows software application that supports the creation, manipulation 

and evaluation of Bayesian probability models [5]. 

 

1.4 Outline 

The entire report divided into 6 Chapter. In Chapter 1, it gives a short review of Software 

product line, Reuse & Feature Constraint. Chapter 2 shows the feature tree and BN and an 

example of feature tree of a Bayesian network. Chapter 3 covers Cardinality & its component. 

Chapter4 defines First Order Logic based analysis rules of false optional and dead features. 

Meanwhile, Chapter 5 models the analysis rules of Bayesian network & its probabilistic 

calculation. Plus all rules are verified by tools in this Chapter. In conclusion, in Chapter 6 we 

conclude the report by summarizing our contributions and outlining our future plans. 
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Chapter 2 

Background 

2.1 Software product line: 

A software product line is a standard of software-demanding systems that share a mutual, 

managed set of features satisfying the specific needs of a particular market segment or mission 

which are developed from a common set of core assets in a prescribed way [12]. Software 

product lines are emerging as a viable and important development paradigm allowing companies 

to realize order-of-magnitude improvements in time to market, cost, productivity, quality, and 

other business drivers. Software product line engineering can also allow fast market entry and 

flexible response, and provide a capability for mass customization [3, 4]. 

2.2 Feature Tree: 

A Feature Tree is a classified diagram that visually shows the features of a solution in groups of 

increasing levels of detail.  In the Feature Tree, some features may be flagged as mandatory, 

some optional, and some as mutually exclusive [13].  Features may be further flagged for 

development cycles, business priority, dependencies, or other relevant information. They are 

most commonly used for planning the overall feature set of a single solution or product that will 

be evolved over time or for defining the differing features that will be included in a product line 

[14, 15]. 
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2.3 Bayesian Network 

Bayesian Network is one kind graphical representation which using cumulative probability 

distribution to make set of graph & make a relation with each node by arrow Assuming discrete 

variables, the strength of the relationship between variables is quantified by conditional 

probability distributions associated with each node [6]. The only constraint on the arcs allowed 

in a BN is that there must not be any directed cycles. In addition, BNs model the quantitative 

strength of the connections between variables, allowing probabilistic beliefs about them to be 

updated automatically as new information becomes available [8,9,10,11]. 

 

Example of Bayesian Network 

A Bayesian network represents a set of random variables and their conditional dependencies via 

a graph. The nodes in a Bayesian network represent a set of random variables, 

𝑋 = X1 …… X𝑖 ……X𝑛  from the domain. A set of directed arcs (or links) connects pairs of nodes, 

𝑋𝑖 → X𝑗    , representing the direct dependencies between variables [10]. 

 

  

 

Figure 2.2: BN Representation of a Feature Tree 
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Figure 2.2  illustrates a Bayesian network. Its set of edges isE = {(v, x), (v, y)} . This constitutes 

a DAG because there are no undirected edges and there are no cycles. Furthermore, since x and y 

are conditionally independent of each other, so we can following: 𝑃 𝑥 𝑣, 𝑦 = 𝑃 𝑥 𝑣 ,which 

means that, for the factorization represented by the Bayesian Network, the probability of x is 

conditioned only v and that the value of c is irrelevant for this local probability. Likewise, we 

can say   𝑃 𝑦 𝑥, 𝑣 = 𝑃(𝑦|𝑣) . The edges in the Bayesian network encode a particular 

factorization of the joint distribution [9]. In this example, the joint distribution of all variables, as 

factorized by this Bayesian network is, 

𝑃 𝑥, 𝑣, 𝑦 = 𝑃 𝑥 𝑣 𝑃(𝑣)𝑃(𝑦|𝑣) 

 

In general, given nodes 𝐴 = 𝐴1 …… . . , 𝐴𝑛  the joint probability function for any Bayesian 

Network is 

 

𝑃 𝐴 =  𝑃(𝐴𝑖 |𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐴𝑖))

𝑛

𝑖=1
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Chapter 3 

 

Cardinality Based SPL 

3.1 Feature Model 

A feature model is organized a set of features and makes a relationships between a parent feature 

and its child features which are important distinguishing characteristics, qualities, or features of a 

family of systems [6]. They are making a graphical illustration of a particular system using 

parent-child relation, rending the shared structure and behavior of a set of similar systems. All 

the various features of a set of similar/related systems are needed to compose into a feature 

model [15]. These entire features are grouped with cardinality where Cardinality can be defined 

with lower bound & upper bound. Lower bound indicates the minimum feature that can be 

selected within group cardinality. On the Contrast, Upper bound indicates the maximum feature 

that can be selected within group cardinality. 

 

3.2 Cardinality 

The concept of group cardinality was generalized in as a set of features annotated with a 

cardinality specifying an interval of how many features can be selected from that set [16 a 

feature cardinality specification may consist of a sequence of intervals [18].Features can be 

annotated with    cardinalities, such as <1. ∗> or <3, 3>. Mandatory and optional features can be 

considered special cases of features with the cardinalities <1, 1> and <0, 1>, respectively. 

Feature cardinalities were motivated by a practical application. Furthermore, group cardinality is 

a property of the relationship between a parent and a set of sub features. Basically, Cardinality-

based feature modeling integrates a number of extensions to the original Feature-Oriented 

Domain Analysis notation [14]. 
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A cardinality-based feature model is an order of features, where each feature has feature 

cardinality. A feature cardinality is an interval of the form <m, n>, where m ∈Z ∧n ∈Z ∪ {∗} ∧0 

≤ m ∧ (m ≤ n ∨n = ∗) [17].More precisely, a feature cardinality is attached to the relationship 

between a solitary feature and its parent [14, 17]. Note that we allow a feature cardinality to have 

as an upper bound the Kleene star *. Such an upper bound denotes the possibility to take a 

feature an unbounded number of times. An example of a valid specification of a feature 

cardinality with more than one interval is [0...2], [6...6], which says that we can take a feature 0, 

1, 2 or 6 times. Note that we allow the last interval in a feature cardinality to have as an upper 

bound the Kleene star ∗. Such an upper bound denotes the possibility to take a feature an 

unbounded number of times. For example, the feature cardinality [1...2], [7...∗] requires that the 

associated feature is taken 1, 2, 5, or any number greater than 7 times. Semantically, the feature 

cardinality ε is equivalent to [0...0] and implies that the sub feature can never be chosen in a 

configuration. Additionally, features can be arranged into feature groups, where each feature 

group has group cardinality. Group cardinality <m, n>of a group is an interval with n as lower 

bound and n′ as upper bound. Given that k >0 is the number of grouped features in the group, we 

assume that the following invariant holds: 0 ≤ n ≤ n′ ≤ k. Group cardinality denotes how many 

group members can be selected. For example, at least and at most one of the features Credit 

Card, Debit Card, and Purchase Order must be selected as a sub feature of Payment Type [14]. 

 

 

3.3 Example of Case Study 

 

We used Graph Product Line as running example because it is well-known in the product line 

community, and it was proposed to be a standard case for evaluating product line methodologies. 

We used 9 artificial features to produce these defects. We identified artificial features with a 

capital AF. In addition, we identified original features of the model with their names. The 

members of the GPL are graphs either Directed or Undirected, their edges are Weighted or 

Unweighted, and their search algorithms are breadth-first search (BFS) or depth-first search 

(DFS).  
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Chapter 4 

Feature Analyses 

4.1 First Order Logic Predicates 

To implement our earlier work on logical representation of feature model and their analysis 

rules, we represent in this section a set of rules for dead and false optional features based on 

group of Cardinality [6, 7, 13].We use the following First Order Logic (FOL) predicates to 

define the rules. 

 

 Variation point (v): This predicate indicates that feature v is a variation Point, i.e., 

feature v has child feature(s). 

 Mandatory variant (v, x): This predicate indicates that feature x is a mandatory Feature 

of feature v, i.e., x is a mandatory child of v. 

 Optional variant (v, x): Here, x is an optional feature of v. 

 Requires(x, y): It indicates that feature x requires feature y. 

 Exclude(x,y): This predicate indicates that feature x and y are mutually exclusive. 

 Select(x): Variant x is selected in the configuration. 
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4.2 False Optional Feature 

Rule 1 

 

 

Figure 4.2.1: Feature Tree for FOF Rule 1 

First Order Logic: 

∀𝑣,𝑓,𝑥,𝑦,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟y_variant˄𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡(𝑓)^optional_𝑣𝑎𝑟𝑖𝑎n𝑡(

𝑥)^optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑦)^optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑧)^𝑑𝑒𝑎𝑑_f𝑒𝑎𝑡𝑢𝑟𝑒(𝑥)˄𝑑𝑒𝑎𝑑_f𝑒𝑎𝑡𝑢𝑟𝑒(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑓) 

⇒¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)˄¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑧). 

Rule 2 

 

 

Figure 4.2.2: Feature Tree for FOF Rule 2 
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First Order Logic: 

∀𝑣,𝑓,𝑥,𝑦,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟y_variant(f)^v𝑎𝑟𝑖𝑎𝑛𝑡ion_𝑝𝑜𝑖𝑛𝑡(𝑓)^optional_𝑣𝑎𝑟𝑖𝑎

n𝑡(𝑥)^optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑦)˄optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑧)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑓)⇒¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑧) 

 

Rule 3 

 

 

Figure 4.2.3: Feature Tree for FOF Rule 3 

First Order Logic: 

∀𝑣,x,y,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)^𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟y_variant(𝑥)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟y_variant 

^ variation_point (𝑦)˄optional_𝑣𝑎𝑟𝑖𝑎n𝑡 (𝑧)˄optional_𝑣𝑎𝑟𝑖𝑎n𝑡 (𝑤)˄𝑒𝑥𝑐𝑙𝑢𝑑𝑒(𝑥,𝑧) 

˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)⇒¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑧)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑤). 
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4.3 Dead Feature 

Rule 1 

 

 

                                            Figure 4.3.1: Feature Tree for DF Rule 1 

 

 

First Order Logic: 

∀𝑣,𝑓,𝑥,𝑦,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑥)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑤) 

˄𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑦)˄𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑧)˄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑥,𝑦) 

˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)⇒𝑠𝑒𝑙𝑒𝑐𝑡(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑤)¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑧). 
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Rule 2 

  

   

                            Figure 4.3.2: Feature Tree for DF Rule 2 

 

 

First Order Logic:  

∀𝑣,𝑓,𝑥,𝑦,𝑧.𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛_p𝑜𝑖𝑛𝑡(𝑣)˄𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦_v𝑎𝑟𝑖𝑎𝑛𝑡(𝑓)˄optional_𝑣𝑎𝑟𝑖𝑎n𝑡(𝑥)˄optional_𝑣𝑎𝑟𝑖

𝑎n𝑡(𝑧)˄𝑑𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑦)˄exclude(x,y)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑓)⇒𝑠𝑒𝑙𝑒𝑐𝑡(𝑥)˄¬𝑠𝑒𝑙𝑒𝑐𝑡(𝑦)˄𝑠𝑒𝑙𝑒𝑐𝑡(𝑧). 

 

 

 

 



14 
 

Chapter 5 

 

Bayesian Representation 

5.1 Bayesian Modeling 

After analyzing the scenarios for false optional and dead features, we define Bayesian Network 

representation of the scenarios. The key factor in defining the BN presentation is to identify the 

dependencies among the features. Our BNs are influenced by our logical representation shown I 

figure. 

5.1.1   False Optional Feature: 

An optional feature that constantly belongs to a mandatory feature is known a False Optional 

Feature [6]. 

Rule 1: 

False Optional, Rule 1:One or more feature(s) become(s) false optional when it is (they are) 

grouped by a group cardinality with (with a mandatory father) having lower bound of “m” and 

upper bound of “n” & m≠n and [k-n] dead feature within the cardinality where “k” is the total 

number of features inside the group cardinality. 

In the BN above, feature x, y, z are three variants of the variation point “f” and feature “f” is a 

variant of the variation point v. Thus the probability of features x, y, z being selected are directly 

dependent on whether v and f is selected or not. Additionally f is dependent on v.  

 

 

 

  Feature Tree Bayesian Network 

Figure 5.1.1.1:  Bayesian Network representation of FOF Rule 1 
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v f x y z 

 

T F 

1 0 

v T F 

T 1 0 

F 0 1 
 

F T F 

T 0 1 

F 0 1 
 

f T F 

T 0 1 

F 0 1 
 

f T F 

T 1 0 

F 0 1 
 

Figure 5.1.1.2: NPT for False Optional Feature rule 1 

 

From figure, based on the lower bound and upper bound of the group cardinality we can see that after 

“f” is selected. There are  3𝑐2 + 3𝑐1 = 6 possible combinations of feature from the group cardinality. 

Combination 1 x 

Combination 2 y 

Combination 3 z 

Combination 4 xy 

Combination 5 yz 

Combination 6 zx 

 

 

For combination 1, 

𝑃 𝑥, 𝑓 = 𝑃 𝑥 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

    𝑝 𝑥 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑥 = 𝑇, 𝑓 = 𝑇)

𝑝(𝑓 = 𝑇)
 

                                = 
 𝑃 𝑥=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                =
𝑃 𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)
 

 

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  
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                              = 0* 1 * 1 = 0 

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  

                              =0 * 0 * 0 = 0 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                               = 1 * 1 = 1 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                = 0 * 0 = 0 

    𝑃 𝑥 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0 

 

Thus combination 1 is an invalid combination for this scenario. 

 

For combination 2 

   𝑃 𝑦, 𝑓 = 𝑃 𝑦 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

   𝑃 𝑦 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑦 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)
 

                                = 
 𝑃 𝑦=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                = 
𝑃 𝑦=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑦=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)
 

 

∴ 𝑃 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                = 0* 1 * 1 = 0 
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∴ 𝑃 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  

                                 = 0 * 0 * 0 = 0 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                  = 1 * 1 = 1 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                   = 0 * 0 = 0 

       𝑃 𝑦 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0 

 

Thus combination 2 is an invalid combination for this scenario. 

 

For Combination 3 

P 𝑧, 𝑓 = 𝑃 𝑧 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

   𝑃 𝑧 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑧 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)
 

                                =  
 𝑃 𝑧=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                = 
𝑃 𝑧=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑧=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)
 

 

∴ 𝑃 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                  = 1 * 1 * 1 = 1 

∴ 𝑃 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  
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                                    =1 * 0 * 0 = 0 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                     = 1 * 1 = 1 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                     = 0 * 0 = 0 

          𝑃 𝑧 = 𝑇 𝑓 = 𝑇 =
1 + 0

1 + 0
= 1 

Thus combination 3 is a valid combination for this scenario. 

For combination 4 

𝑃 𝑥, 𝑦, 𝑓 = 𝑃 𝑥, 𝑦 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

𝑃 𝑥 = 𝑇, 𝑦 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)
 

                                        = 
 𝑃 𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                         = 
 𝑃 𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)
 

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇  

                     𝑃(𝑦 = 𝑇|𝑓 = 𝑇) 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                           = 0 * 0 * 1 = 0 

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇  

𝑃(𝑦 = 𝑇|𝑓 = 𝑇)𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  

                                           = 0 * 0 * 0 = 0 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  
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                                                 = 1 * 1 = 1 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                                 = 0 * 0 = 0 

          𝑃 𝑥 = 𝑇, 𝑦 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0 

Thus combination 4 is an invalid combination for this scenario. 

Similarly it can be shown that combination 5 and combination 6 are also invalid for this scenario 

making “z” a false optional feature. 

Rule 2: 

False Optional, Rule 2:One or more feature(s) becomes false optional when it is (they are) 

grouped by a group cardinality with (with a mandatory father) having lower bound of “m” is 

equal or greater than upper bound of “n” and [k-m] dead feature within the cardinality where “k” 

is the total number of features inside the group cardinality. 

In the Bayesian Network above, feature x,y,z are three variants of the variation point “f” and feature 

“f” is a variant of the variation point “v”. Thus the probability of features x,y,z being selected are 

directly dependent on whether “v” and “f” is selected or not. Then “f” is dependent on “v”.  

 

 

 

 

 

Feature Tree                                                           Bayesian Network 

Figure 5.1.1.3: Bayesian Network representation of FOF Rule 2 
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v F x y z 

 

T F 

1 0 

 

v T F 

T 1 0 

F 0 1 
 

f T F 

T 0 1 

F 0 1 
 

f T F 

T 1 0 

F 0 1 
 

f T F 

T 1 0 

F 0 1 

 

Figure 5.1.1.4: NPT for False Optional Feature rule 2 

 

From figure, the lower bound and upper bound of the group cardinality after f is selected. There 

is 3𝑐2 = 3 possible combination of feature from the group cardinality. 

Combination 1 xy 

Combination 2 yz 

Combination 3 zx 

 

For combination 1: 

𝑃 𝑥, 𝑦, 𝑓 = 𝑃 𝑥, 𝑦 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

𝑃 𝑥 = 𝑇, 𝑦 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)
 

                                        = 
 𝑃 𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                         = 
𝑃 𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑦=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)
 

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 

= 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃(𝑦 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                           = 0 * 1 * 1 = 0 

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 

= 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃(𝑦 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  
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                                              = 0 * 1 * 0*0 = 0 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                               = 1 * 1 = 1 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                               = 0 * 0 = 0 

        𝑃 𝑥 = 𝑇, 𝑦 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0 

 

Thus combination 1 is an invalid combination for this scenario. 

 

For combination 2: 

𝑃 𝑦, 𝑧, 𝑓 = 𝑃 𝑦, 𝑧 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

𝑃 𝑦 = 𝑇, 𝑧 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑦 = 𝑇, 𝑧 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)
 

                                        = 
 𝑃 𝑦=𝑇,𝑧=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                        = 
𝑃 𝑦=𝑇,𝑧=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑦=𝑇,𝑧=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)
 

 

∴ 𝑃 𝑦 = 𝑇, 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 𝑃(𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                          = 1 * 1 * 1 = 1 

∴ 𝑃 𝑦 = 𝑇, 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑓 = 𝑇 𝑃(𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  

                                          =1* 1 * 0*0 = 0 
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∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                           = 1 * 1 = 1 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                   = 0 * 0 = 0 

𝑝 𝑦 = 𝑇, 𝑧 = 𝑇 𝑓 = 𝑇 =
1 + 0

1 + 0
= 1 

Thus combination 2 is a valid combination for this scenario. 

For combination 3: 

𝑃 𝑧, 𝑥, 𝑓 = 𝑃 𝑧, 𝑥 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

𝑃 𝑧 = 𝑇, 𝑥 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑧 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)
 

                                        = 
 𝑃 𝑧=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                        = 
𝑃 𝑧=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑧=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)
 

∴ 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃(𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                                = 1*0*1 * 1 = 0 

∴ 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃(𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  

                                                 = 1 * 0 * 0 * 0 = 0 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                                 = 1 * 1 = 1 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                                 = 0 * 0 = 0 
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𝑃 𝑧 = 𝑇, 𝑥 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0 

Thus combination 3 is an invalid combination for this scenario. 

Rule 3: 

False Optional, Rule 3: An optional feature becomes false optional when it is connected with a 

mandatory father by alternative relation. In the following graph x and y are mandatory feature. 

Feature x exclude feature z which is alternate with feature w. Feature z will be dead feature for 

exclude.  

In alternate relation, only one feature can be selected. So w will be false optional. In the Bayesian 

Network above, both x and y are two variants of the variation point v. z is a variant of variation 

point x and y. w also a variant of variation point y.  

 

 

 

 

 

 

                      Feature Tree  Bayesian Network 

 

Figure 5.1.1.5: Bayesian Network representation of FOF Rule 3 
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The NPT of these features are given below 

v x y z W 

 

 

T F 

1 0 

 

v T F 

T 1 0 

F 0 1 

 

 

 

 

 

 

v T F 

T 1 0 

F 0 1 

 

x y T F 

T T 0 1 

T F I I 

F T I I 

F F 0 1 

 

 

y T F 

T 1 0 

F 0 1 

Figure 5.1.1.6: NPT for False Optional Feature rule 3 

 

 

For feature Z, 

         𝑃 𝑧, 𝑥, 𝑦 = 𝑃 𝑧 𝑥, 𝑦 𝑃 𝑥 𝑣 𝑃 𝑦 𝑣 𝑃 𝑣  

         𝑃(𝑧 = 𝑇|𝑥 = 𝑇, 𝑦 = 𝑇) =
𝑃(𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇)

𝑃(𝑥 = 𝑇, 𝑦 = 𝑇)
 

=  
 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓 = 𝑇, 𝑣 𝑣∈{𝑇,𝐹}
 

                                                   =
𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 + 𝑃(𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹)

𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 + 𝑃(𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹)
 

∴ 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 

= 𝑃 𝑧 = 𝑇 𝑥 = 𝑇, 𝑦 = 𝑇 𝑃 𝑥 = 𝑇 𝑣 = 𝑇 𝑃 𝑦 = 𝑇 𝑣 = 𝑇 𝑃(𝑣 = 𝑇) 

                                                          = 0 ∗ 1 ∗ 1 ∗ 1 = 0 

∴ 𝑃 𝑧 = 𝑇, 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹 

= 𝑃 𝑧 = 𝑇 𝑥 = 𝑇, 𝑦 = 𝑇 𝑃 𝑥 = 𝑇 𝑣 = 𝐹 𝑃 𝑦 = 𝑇 𝑣 = 𝐹 𝑃(𝑣 = 𝐹) 
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                                       = 0 ∗ 0 ∗ 0 ∗ 0 = 0 

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑣 = 𝑇 𝑃 𝑦 = 𝑇 𝑣 = 𝑇 𝑃(𝑣 = 𝑇) 

                                             = 1 ∗ 1 ∗ 1 = 1 

∴ 𝑃 𝑥 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑣 = 𝐹 𝑃 𝑦 = 𝑇 𝑣 = 𝐹 𝑃(𝑣 = 𝐹) 

                                             = 0 ∗ 0 ∗ 0 = 0 

 

𝑃 𝑧 = 𝑇 𝑥 = 𝑇, 𝑦 = 𝑇 =
0 + 0

1 + 0
= 0 

Thus z is an invalid combination for this scenario. 

 

For feature W, 

                    𝑃 𝑤, 𝑦 = 𝑃 𝑤 𝑦 𝑃 𝑦 𝑣 𝑃 𝑣  

                    𝑃(𝑤 = 𝑇|𝑦 = 𝑇) =
𝑃(𝑤 = 𝑇, 𝑦 = 𝑇)

𝑃(𝑦 = 𝑇)
 

=  
 𝑃 𝑤 = 𝑇, 𝑦 = 𝑇, 𝑓 = 𝑇, 𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓 = 𝑇, 𝑣 𝑣∈{𝑇,𝐹}
 

                                                     =
𝑃 𝑤 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 + 𝑃(𝑤 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹)

𝑃 𝑦 = 𝑇, 𝑣 = 𝑇 + 𝑃(𝑦 = 𝑇, 𝑣 = 𝐹)
 

∴ 𝑃 𝑤 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑤 = 𝑇 𝑦 = 𝑇 𝑃 𝑦 = 𝑇 𝑣 = 𝑇 𝑃(𝑣 = 𝑇) 

                                                      = 1 ∗ 1 ∗ 1 = 1 

∴ 𝑃 𝑤 = 𝑇, 𝑦 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑤 = 𝑇 𝑦 = 𝑇 𝑃 𝑦 = 𝑇 𝑣 = 𝐹 𝑃(𝑣 = 𝐹) 

                                                      = 1 ∗ 0 ∗ 0 = 0 

∴ 𝑃 𝑦 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑣 = 𝑇 𝑃(𝑣 = 𝑇) 
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                                                          = 1 ∗ 1 = 1 

∴ 𝑃 𝑦 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑣 = 𝐹 𝑃(𝑣 = 𝐹) 

                                                          = 0 ∗ 0 = 0 

 

                          𝑃 𝑤 = 𝑇 𝑦 = 𝑇 =
1 + 0

1 + 0
= 1 

Thus w is a valid combination for this scenario 

 

5.1.2     Dead Feature: 

An optional feature that never gets selected in a valid product is known a Dead Feature [6]. 

 

Rule 1: 

Dead Feature, Rule 1: An optional feature becomes dead if it belongs to group cardinality and 

the number of false optional feature is equal to the cardinality upper bound. In the following 

graph feature y and z connected with <1,1> group cardinality. x is a mandatory feature which 

requires y where y is a optional feature. This results into y being a false optional feature. Since 

upper bound is 1, y alone can be selected. Thus z is dead feature. 

In the Bayesian network above , feature x,y,z,w are the four variant of the variation point v.Thus 

the probability of these variant feature being selected are directky depend on whether v is 

selected or not. Then x is only dependent on v but the probability of y being selected is also 

dependent on whether x is selected or not.Also w is only dependent on v . But z is dependent on 

whether z is selected or not.Hense both y and z are simultaneously dependent on (v,x) and (v,w). 
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 Feature Tree Bayesian Network 

Figure 5.1.2.1: Bayesian Network representation of DF Rule 1 

The NPT are given below 

v X y z w 

T F 

1 0 
 

v T F 

T 1 0 

F 0 1 
 

v X T F 

T T 1 0 

T F I I 

F T I I 

F F 0 1 
 

v T F 

T 0 1 

F 0 1 
 

v T F 

T 1 0 

F 0 1 
 

 

Figure 5.1.2.1: NPT for dead feature rule 1 

For Feature Y :  

𝑃 𝑦, 𝑥 = 𝑃 𝑦 𝑥 𝑃 𝑓 𝑣 𝑃(𝑣) 

𝑃 𝑦 = 𝑇 𝑥 = 𝑇 =
𝑃(𝑦 = 𝑇, 𝑥 = 𝑇)

𝑃(𝑥 = 𝑇)
 

                                = 
 𝑃 𝑦=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
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                                =
𝑃 𝑦=𝑇,𝑥=𝑇,𝑣=𝑇 +𝑃(𝑦=𝑇,𝑥=𝑇,𝑣=𝐹)

𝑃 𝑥=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑣=𝐹)
 

 

∴ 𝑃 𝑦 = 𝑇, 𝑥 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇 𝑃 𝑥 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                                = 1 * 1 * 1 = 1 

∴ 𝑃 𝑦 = 𝑇, 𝑥 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇 𝑃 𝑥 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  

                                                 =1 * 0 * 0 = 0 

∴ 𝑃 𝑥 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                                 = 1 * 1 = 1 

∴ 𝑃 𝑥 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                   = 0 * 0 = 0 

𝑃 𝑦 = 𝑇 𝑥 = 𝑇 =
1 + 0

1 + 0
= 1 

Thus y is a valid combination for this scenario. 

For feature Z:  

𝑃 𝑧, 𝑤 = 𝑃 𝑧 𝑤 𝑃 𝑤 𝑣 𝑃(𝑣) 

𝑃 𝑧 = 𝑇 𝑤 = 𝑇 =
𝑃(𝑧 = 𝑇, 𝑤 = 𝑇)

𝑃(𝑤 = 𝑇)
 

                                = 
 𝑃 𝑧=𝑇,𝑤=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                =
𝑃 𝑧=𝑇,𝑤=𝑇,𝑣=𝑇 +𝑃(𝑧=𝑇,𝑤=𝑇,𝑣=𝐹)

𝑃 𝑤=𝑇,𝑣=𝑇 +𝑃(𝑤=𝑇,𝑣=𝐹)
 

∴ 𝑃 𝑧 = 𝑇, 𝑤 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑧 = 𝑇 𝑤 = 𝑇 𝑃 𝑤 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                                = 0* 1 * 0 = 0 
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∴ 𝑃 𝑧 = 𝑇, 𝑤 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑧 = 𝑇 𝑤 = 𝑇 𝑃 𝑤 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  

                                             = I * 0 * 0 = 0 

∴ 𝑃 𝑤 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑤 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                              = 0* 0 = 0 

∴ 𝑃 𝑤 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑤 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                               = 0 * 0 = 0 

                    𝑃 𝑧 = 𝑇 𝑤 = 𝑇 =
0 + 0

1 + 0
= 0 

Thus z is an invalid combination for this scenario. 

Rule 2: 

Dead Feature, Rule 2: A feature within group cardinality becomes a dead feature when it is 

excluded by another feature inside the cardinality. In the Bayesian Network above, feature x,y,z 

are three variants of the variation point “f” and feature “f” is a variant of the variation point “v”.  

Probability of x and z are directly dependent on f is selected or not but y is dependent on both x 

and f. The NPT of these feature are given below. 

  

 

 

 

 

  

       Feature Tree                                                                       Bayesian Network 

Figure 5.1.2.3: Bayesian Network representation of DF Rule 1 
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v f x y Z 

 

 

 

T F 

1 0 

 

 

 

v T F 

T 1 0 

F 0 1 

 

 

f T F 

T 1 0 

F 0 1 

 

 

 

f x T F 

T T 0 1 

T F I I 

F T I I 

F F 0 1 

 

 

 

f T F 

T 1 0 

F 0 1 

Figure 5.1.2.4: NPT for dead feature rule 2 

 

From figure, the lower bound and upper bound of the group cardinality after f is selected. There 

is 3𝑐2 = 3 possible combination of feature from the group cardinality. 

Combination 1 xy 

Combination 2 yz 

Combination 3 zx 

 

For feature x,  

𝑃 𝑥, 𝑓 = 𝑃 𝑥 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

𝑃 𝑥 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑥 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)
 

                             = 
 𝑃 𝑥=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                             = 
𝑃 𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)
 

 

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  
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                                                = 1* 1 * 1 = 1 

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  

                                                 =1 * 0 * 0 = 0 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                                 = 1 * 1 = 1 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                                 = 0 * 0 = 0 

                       𝑃 𝑥 = 𝑇 𝑓 = 𝑇 =
1 + 0

1 + 0
= 1 

 

Thus x is an invalid combination for this scenario. 

 

 

For feature y, 

   𝑃 𝑦, 𝑥, 𝑓 = 𝑃 𝑦 𝑥, 𝑓 𝑃 𝑥 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

   𝑃 𝑦 = 𝑇 𝑥 = 𝑇 =
𝑃(𝑦 = 𝑇, 𝑥 = 𝑇)

𝑃(𝑥 = 𝑇)
 

                                = 
 𝑃 𝑦=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                 = 
𝑃 𝑦=𝑇,𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑦=𝑇,𝑥=𝑇,𝑓=𝐹,𝑣=𝐹)

𝑃 𝑥=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑥=𝑇,𝑓=𝐹,𝑣=𝐹)
 

 

∴ 𝑃 𝑦 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇, 𝑓 = 𝑇  
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𝑃(𝑥 = 𝑇|𝑓 = 𝑇)𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                                = 0* 1 * 1*1 = 0 

∴ 𝑃 𝑦 = 𝑇, 𝑥 = 𝑇, 𝑓 = 𝐹, 𝑣 = 𝐹 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇, 𝑓 = 𝐹  

𝑃(𝑥 = 𝑇|𝑓 = 𝐹)𝑃 𝑓 = 𝐹 𝑣 = 𝐹 𝑃 𝑣 = 𝐹  

                                                 = I *0 * 0 * 0 = 0 

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃(𝑥 = 𝑇|𝑓 = 𝑇)𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                                 = 1* 1 * 1 = 1 

∴ 𝑃 𝑥 = 𝑇, 𝑓 = 𝐹, 𝑣 = 𝐹 = 𝑃(𝑥 = 𝑇|𝑓 = 𝐹)𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                                  = 0*1* 0 = 0 

                        𝑃 𝑦 = 𝑇 𝑓 = 𝑇 =
0 + 0

1 + 0
= 0 

Thus y is a valid combination for this scenario. 

 

For Combination 3 

    𝑃 𝑧, 𝑓 = 𝑃 𝑧 𝑓 𝑃 𝑓 𝑣 𝑃(𝑣) 

    𝑃 𝑧 = 𝑇 𝑓 = 𝑇 =
𝑃(𝑧 = 𝑇, 𝑓 = 𝑇)

𝑃(𝑓 = 𝑇)
 

                                = 
 𝑃 𝑧=𝑇,𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}

 𝑃 𝑓=𝑇,𝑣 𝑣∈{𝑇,𝐹}
 

                                = 
𝑃 𝑧=𝑇,𝑓=𝑇,𝑣=𝑇 +𝑃(𝑧=𝑇,𝑓=𝑇,𝑣=𝐹)

𝑃 𝑓=𝑇,𝑣=𝑇 +𝑃(𝑓=𝑇,𝑣=𝐹)
 

 

∴ 𝑃 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  
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                                                = 1 * 1 * 1 = 1 

∴ 𝑃 𝑧 = 𝑇, 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 𝑃 𝑓 = 𝑇 𝑣 = 𝐹 𝑃 𝑣 = 𝑓  

                                                 =1 * 0 * 0 = 0 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝑇 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑇 𝑃 𝑣 = 𝑇  

                                                 = 1 * 1 = 1 

∴ 𝑃 𝑓 = 𝑇, 𝑣 = 𝐹 = 𝑃 𝑓 = 𝑇 𝑣 = 𝑓 𝑃 𝑣 = 𝑓  

                                                 = 0 * 0 = 0 

                        𝑃 𝑧 = 𝑇 𝑓 = 𝑇 =
1 + 0

1 + 0
= 1 

Thus z is an invalid combination for this scenario. 

 

Now for combination 1 

𝑥𝑦 = 𝑃 𝑥 = 𝑇 𝑓 = 𝑇 ∗ 𝑃 𝑦 = 𝑇 𝑥 = 𝑇  

           = 1 ∗ 0 = 0 

 Feature xy is not selected. 

Now for combination 2 

𝑦𝑧 = 𝑃 𝑦 = 𝑇 𝑥 = 𝑇 ∗ 𝑃 𝑧 = 𝑇 𝑥 = 𝑇  

           = 0 ∗ 1 = 0 

 Feature yz is not selected. 

 

Now for combination 3 

𝑧𝑥 = 𝑃 𝑧 = 𝑇 𝑓 = 𝑇 ∗ 𝑃 𝑥 = 𝑇 𝑓 = 𝑇  
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           = 1 ∗ 1 = 1 

 Feature zx is selected. 

Thus, y becomes a dead feature. 

 

5.2 Tool Representation 

To represent the vertices, or nodes, the variables and the edges or arcs, the conditional dependencies 

we use MSBNX as a tools. MSBNX is a Microsoft Windows software application that supports the 

creation, manipulation and evaluation of Bayesian probability models one of the primary roles of a 

Bayesian model is to allow the model creator to use commonsense and real-world knowledge to 

eliminate needless complexity in the model. The method used to remove meaningless relationships in a 

Bayesian model is to explicitly declare the meaningful ones.  

 

Figure 5.2.1: FOF Rule 1 

These influences are represented by conditioning arcs between nodes. Each arc should represent 

a causal relationship between temporal antecedents. Basically it is a graphical representation of 

Bayesian Networks.We injects Boolean '0' and „1‟ to each node regarding their dependency on 

vertices to vertices&represent truth table a below. 
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Figure 5.2.2: NPT for FOF Rule 1 

After setting the value on to the nodes , we take it to the   “Inference Evaluation” for execution.  

Then it shows a graphical representation of whole model. 

 

Figure 5.2.3: Bar Chart for FOF Rule 1 
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Figure shows that if v is varient of full manadory feature f , then z will be false optional feature 

where x&y feature are dead feature. We represent our all rules by following procedure & get the 

result which is equal to the result of  Bayesian Networks.  

Inconsistency: A model or system can  be say that i it‟s consist inconsistency if it has any kind of 

anomaies that it shouldn’t occur.To represent all rules in tools we found some inconsistency 

where by following procedure , 

Suppose, we are considering a scenario where v is root,  f is the decender of v&z is the decender 

of f.If z is selected then f has to selested as well as v 

We can get two kind of situation. 

1) z is selected but f is not selected 

2) z is selected but v is not selected  

  

Figure: Situation 1          Figure: Situation 2 

 

Figure 5.2.4: Inconsistency 

 

If either one of this occur on the model then it will face inconsistency on the model. Basically 

inconsistency is one kind of anomalies in system that are rarely happen . 

As usual we represent inconsistencyin the way we represent following rules. 

 



37 
 

Let‟s a have demonstration in Dead Feature, Rule 2. First, we take the portion of model where 

inconsistency exists.  

  

Figure 5.2.5: Bayesian representation in tools 

Then, set the truth value regarding dependency on each node and set YES to „0‟ & NO to „1‟ for 

in y nodes for inconsistency. 

When we evaluate the graphical representation of the output for Bar chart, it shows itswhich 

node is selected having inconsistency. 

 

 

Figure 5.2.2: Bar Chart for Dead feature Rule 2 
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Chapter 6  
 

Conclusion 
 

6.1 Summery  

This thesis presented an approach to defining and verifying software product line feature analysis 

rules by using Bayesian Networks. Our primary object was to define a set of rules for both dead 

and false optional features based on Cardinality based. Bayesian Network is used to model and 

verify the analysis rules. In association to our earlier work on applying First order logic, we 

represent them into Feature Diagram. To be able to know whether product lines are the right 

approach for Feature diagram or not, we represent it in Bayesian Network using cumulative node 

probability. After all this suggested work, we verify result in tools to check whether the result is 

valid or not. 

 

 

6.2 Future Work 

As we work with only two anomalies of feature model, we like to work with other anomalies & 

take those anomalies into some rules. We also interested in using probability in those rules. 

Other anomalies are 

1. Conditionally dead feature 

2. Wrong cardinality 

3. Redundancy 
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