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Abstract

When data appear more dispersed than expected under a reference model, the situation

is termed as overdispersion. In modelling a count variable in terms of some independent

predictor variables, theoretically most established and the simplest available reference

model is Poisson regression model. For standard Poisson regression model, variance

is equal to mean and there is no extra parameter for dispersion. However, in practi-

cal scenario, the estimated variance from data often exceeds the mean and the data

is considered to be overdispersed. To solve the overdispersion problem, two common

alternative approaches are i) fitting a more general parametric distribution ii) having a

different form mean variance relationship without fully specifying the distribution. Both

approaches include parameters for overdispersion to be estimated from data. However,

when there is no overdispersion, Poisson regression model is preferred for its simplicity,

interpretability and theoretical basis. Therefore, robust test for detecting the significance

of parameter related to overdispersion is important to use before going for alterative to

Poisson regression.

In this work, we have investigated tests for detecting overdispersion when Poisson model

is used for count data. The tests discussed are derived from partial score and are applica-

ble against negative binomial or more generally mixed Poisson alternatives. These tests

do not require fitting alternative models that incorporate overdispersion to check the ab-

sence of overdispersion. Only Poisson model is needed to be fitted. Four test statistics

are illustrated with their distributional approximations for computing significance level.

The test statistics have been analyzed and compared based on the assumptions on de-

riving the statistics, their limiting distributions and applicability for different number of

observation in sample. A simulation study was done to check adequacy of distributional

assumption for three of them who follow approximately normal distribution. The study

involved generating samples of the statistics and proportion of the time each exceeded

the standard normal upper 20%, 10%, 5%, and 1% point were tabulated. From the

results, the normality assumption of one of the statistics has been observed to be good

for large sample size but less accurate for small size. Another one of the statistics has

been found to have almost accurate standard normal distribution even for small sample.

Some comparisons and recommendations relating to the applicability and assumptions

of the statistics are also presented.
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Chapter 1

Introduction

For count data, the simplest and widely used regression model is the Poisson regression

model. Poisson distribution was derived as a limiting case of the binomial by Poisson [1]

for rare events. It is a discrete probability distribution function that gives the probability

of a number of independent events occurring in a fixed time for a given average rate. In

Generalized Linear Model (GLM) framework, it is specified by log-link function, mean

variance equality and dispersion parameter equal to one.

Statistical theory provides strong reasons for choosing the Poisson model for count data.

However, one main feature of Poisson distribution, the variance being equal to mean,

is often not attained in real life data. For the Poisson MLE, it can be shown that con-

sistency requires correct specification of the conditional mean [2]. It does not require

that the dependent variable, Y be Poisson distributed. Valid statistical inference using

default computed maximum likelihood standard errors and t statistics requires correct

specification of both the conditional mean and variance. This also requires equality of

conditional variance and mean termed as equidispersion, but not Poisson distribution

for Y . Poisson model may fail to model the variance of date, because of unobserved

heterogeneity or because of failure of the independence assumption in the usual deriva-

tion of the Poisson. If one of such violations of assumptions is present, we no longer

can say anything about the distribution of the data. For count data, if the variance

of the observations is greater than the mean predicted by the Poisson model, the phe-

nomenon is called Poisson overdispersion or extra-Poisson variation and data is called

to be overdispersed.

In the absence of equidispersion, many alternative methods have been suggested for

dealing with extra Poisson variation [2–4]. The usual approach is to assume a distri-

bution and proceed with classical testing and estimation procedures. For example, if

heterogeneity is gamma distributed, then the count data will be negative binomial dis-

tributed. However, negative binomial regression also has limitations. Apart from the

higher complexity in estimation, if the distributional assumption is not correct, even if

1
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the variance and mean of the assumed negative binomial distribution are correctly spec-

ified, the maximum likelihood estimator is inconsistent. GLM suggests use of inference

techniques only based on specification of mean variance relationship. Quasi likelihood

approaches with log link function but uses different forms of variance function resulting

in varying result in estimation and inference.

If the Poisson assumption still holds acceptably, it is more desirable for its simplic-

ity, strong theoretical basis and having properly matched interpretation of regression

coefficient. So it is very necessary to have a systematic way to determine when they

apply. Most approaches require to model overdispersion with an extra parameter to a

general variance than that attained for Poisson and the significance of that parameter

is needed tested before going for such models. Testing with score statistic, likelihood

ratio, Pearson statistic, Wald statistic are some options for testing requirement of mod-

elling Poisson overdispersion. Score tests for detecting extra-Poisson variation have

been discussed by Collings and Margolin [5], Cameron and Trivedi [6], Dean and Law-

less [7]. Collings and Margolin dealt with some special cases of modelling starting with

a negative binomial model [5]. They derived score, or C (α) tests and discussed asymp-

totic distribution theory for the tests. They presented a comparison with Pearson tests

in detecting overdispersion. Cameron and Trivedi used the general variance function

V ar(Y ) = µ(x) + λµ(x)l for given l as alternative model for score test [6]. Dean and

Lawless suggested tests with mixed Poisson alternative that require only the Poisson

model to be fitted [7]. The scenario is different from Wald or likelihood ratio test that

require more general models to be fitted.

The main aim of this work is to provide a review on and compare some tests to detect

overdispersion in count data. These are formal tests aimed to detect when the variance

of the data is signifucantly higher than that estimated using Poisson regression model.

Poisson alternative with V ar(yi|xi) = µi + αµ2i . These test statistics were derived from

partial score of more to test the significance of α. A simulation study generating sample

distributions of the statistics has been performed and comparison has been made mostly

about the adequacy of the suggested approximations of distributional assumptions in

literature. These test statistics only need Poisson ML estimates of means, not fitting

any alternative distribution.

Chapter 2 provides some necessary backgrounds. A brief on important basics on Gener-

alized Linear Model (GLM) are provided that are necessary in later discussions. Poisson

regression model and MLE in GLM framework and Poisson overdispersion problem are

reviewed in brief. Also negative binomial regression and its two important versions are

revised. Finally, partial score statistic, which the origin of the discussed tests for de-

tecting Poisson overdispersion is derived from negatve binomial log likelihood as a part

of background. Chapter 3 presents some forms score tests for detecting Poisson overdis-

persion. It starts with presenting a test hypothesis with Poisson distribution as null

model and mixed Poisson as alternative model. The mixed Poisson differ from Poisson
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by a parameter α which is assumed to handle extra Poisson variation. To check the

significance of this parameter, four statistics (we have denoted by S1, S2, Sa and Sb)

and their approximate distributions are discussed which were presented in [7]. All of

these are derived from a statistic which can obtain from partial score of negative bino-

mial [5]. Three of the statistics, S1, Sa and Sb had been shown to converge to standard

normal as number of observation n → ∞. In Chapter 4, adequacies of the normality

assumptions for S1, Sa and Sb have been examined by randomly simulating samples of

these statistics for varying n given a particular Poisson regression equation. For com-

parison, similar simulation has been performed on well-established Pearson’s Chi square

statistic. Results were presented in terms of proportion of time the value of S1,Sa and

Sb each exceeded the standard normal upper 20%, 10%, 5%, and 1% points. Normality

assumption Sb has been found to be almost accurate even for small values of n, Sa has

shown slower convergence. The result also suggest the approximation for S1 was not

satisfactory. In Chapter 5, some additional comparisons and applicability of the tests

have been discussed.



Chapter 2

Background

2.1 Generalized Linear Model

Generalized linear model (GLM) combines most frequently used statistical techniques

in a unified framework in order to analyze non-normal data[8]. It was originally intro-

duced by Nelder and Wedderburn [9] to extend linear regression analysis with normal

response variable to an exponential family of distribution including normal, binomial,

Poisson, gamma, or inverse-Gaussian families of distributions. Subsequent work, how-

ever, has extended GLMs to multivariate exponential families (e.g., the multinomial

distribution), to some non-exponential families (e.g., the two-parameter negative bino-

mial distribution), and to situations in where the distribution is not specified completely

(Quasi-likelihood). GLMs have a general algorithm for estimation for fitting based on

likelihood.

2.1.1 Components of GLM

Consider a vector of observations y = [y1, y2, ...yn]T to be a realization of a random

variable Y = [Y1, Y2, ...Yn]T where each Yi is a one-dimensional response to independent

covariates xi = [xi1, . . . xip]
T . A generalized linear model (GLM) consists of three

components [8].

1. Random component, Yi, 1 ≤ i ≤ N, assumed to be independent with probability

density or mass function of the form [8]

f (yi; θi, φ) = e
yiθi−b(θi)

a(φ)
+c(yi,φ) (2.1)

For known a(.), b(.) and c(.), if φ, called the dispersion parameter, is known then

it becomes an exponential distributions with canonical parameter θ.

4
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2. Systematic component, ηi, a linear function of covariates xi given by

ηi = xiβ =
∑
j

xijβj (2.2)

where β = [β0, . . . , βp]
T are regression parameters.

3. Link function, g (µi), a monotonic function that links it to the linear predictor

ηi with the mean µi.

g (µi) = ηi =
∑
j

xijβj (2.3)

It is called canonical link function if θ = η.

Since the link function invertible, we may write

µi = g−1 (ηi) = g−1

(∑
xijβj

)
(2.4)

Thus, the GLM may be thought of as a linear model for a transformation of the expected

response or as a nonlinear regression model for the response. The inverse link g−1 (.) is

also called the mean function.

The mean and variance of the random component Yi can be easily found to be as

under(See Section 2.2.2 in [8]).

µi = E (Yi) = b′ (θi) (2.5)

V ar (Yi) = b′′ (θi) a (φ) (2.6)

The variance of Yi is the product of two factors. One is b′′ (θ) that depends on the

canonical parameter, therefore on the mean and called the variance function, V (µ). The

other, a (φ) depending only on φ, commonly of the form a (φ) = φ/w, where w is a

known prior weight that varies from observation to observation.

2.1.2 Maximum Likelihood Estimation (MLE) in GLM

Taking log on both side of (2.1) we get the log density for ith observation of Y

li(θi; yi, φ) = log f(yi; θi, φ) =
yiθi − b(θi)

a(φ)
+ c(yi, φ) (2.7)

Summing over these log-densities provides an expression for the log likelihood of n

independent observations,

l(y,β) =

n∑
i=1

li(yi; θi, φ) =

n∑
i=1

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
(2.8)
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Under the regularity conditions, ∂l(y,β)
∂βj

= 0, j= 1, 2, . . . , p.

Now g (µi) = ηi, µi = b′(θ), ηi=
∑

j xijβj . So we can employ the chain rule,

∂li
∂βj

=
∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

(2.9)

We can find

∂li
∂θi

=
yi − b′(θi)
a (φ)

=
yi − µi
a(φ)

(2.10)

∂µi
∂θi

= b′′(θi) =
V ar (yi)

a (φ)
(2.11)

∂ηi
∂βj

= xij (2.12)

From (2.7) to (2.10) we can wrie

∂li
∂βj

=
yi − µi
a (φ)

a (φ)

V ar (yi)

∂µi
∂ηi

xij =
(yi − µi)xij
V ar (yi)

∂µi
∂ηi

= 0 (2.13)

Then the jth score is given by

sj (β) =
∂l (y,β)

∂βj
=

n∑
i=1

[
(yi − µi)xij
V ar (yi)

∂µi
∂ηi

]
(2.14)

Thus, the MLE of β = [β0, . . . , βp]
T is the solution the system of the score equations

given by

s (β) = [s1 (β) , s2 (β) , . . . , sp (β)]T = 0 (2.15)

The estimating equations depend on the density f only through the mean and variance.

The estimates are generally not available in closed form, but can be obtained via iterative

algorithm. Two popular iterative methods are Newton-Raphson method and Fisher’s

scoring method. Both take on the same general form and differ only in the variance

structure.

2.1.2.1 Newton-Raphson Method

Let β̂
(m)

be the current estimation to the solution of s (β) = 0. Taking a first-order

Taylor approximation to the equations, we obtain the new estimation value by Newton-

Raphson method

β̂
(m+1)

= β̂
(m)
−
[
Ds
(
β̂
(m)
)]−1

s
(
β̂
(m)
)

(2.16)
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Where D denotes Jacobian of a vector which for score is given by

Ds (β) =


∂s1
∂β1

· · · ∂s1
∂βp

...
. . .

...
∂sp
∂β1

· · · ∂sp
∂βp

 =


∂2l

∂β1∂β1
· · · ∂2l

∂β1∂βp
...

. . .
...

∂2l
∂βp∂β1

· · · ∂2l
∂βp∂βp

 =

[
∂2l (y,β)

∂βj∂βk

]
j,k=1,..,p

Therefore,

β̂
(m+1)

= β̂
(m)
−
[
∂2l (y,β)

∂βj∂βk

]−1
β=β̂

(m)
s
(
β̂
(m)
)

(2.17)

Hence
[
∂2l(y,β)
∂βj∂βk

]
j,k=1,..,p

is the Hessian of l(y,β). When evaluated at β = β̂, it is equal

to negative of observed information matrix at mth iteration. Now

∂2l

∂βr∂βs
=
∂sr
∂βs

=
∂

∂βs

n∑
i=1

[
(yi − µi)xir
V ar (yi)

∂µi
∂ηi

]

=
n∑
i=1

[
(yi − µi)

∂

∂βs

(
xir

V ar (yi)

∂µi
∂ηi

)
+

xir
V ar (yi)

∂µi
∂ηi

∂

∂βs
(yi − µi)

]
∂

∂βs
(yi − µi) = −∂µi

∂ηi

∂ηi
∂βs

= −∂µi
∂ηi

xis

Hence,

∂2l

∂βr∂βs
=

n∑
i=1

[
(yi − µi)

∂

∂βs

(
xir

V ar (yi)

∂µi
∂ηi

)
− 1

V ar (yi)

(
∂µi
∂ηi

)2

xirxis

]
(2.18)

Since ∂2l
∂βr∂βs

depends on Y, in Fisher’s scoring method expected information−E
(

∂2l
∂βr∂βs

)
used instead. For canonical link ∂2l

∂βr∂βs
= E

(
∂2l

∂βr∂βs

)
.

2.1.2.2 Fisher’s Scoring Method

Now

E

(
∂2l

∂βr∂βs

)
= E

(
n∑
i=1

[
(yi − µi)

∂

∂βs

(
xir

V ar (yi)

∂µi
∂ηi

)
− 1

V ar (yi)

(
∂µi
∂ηi

)2

xirxis

])

= −
n∑
i=1

[
1

V ar (yi)

(
∂µi
∂ηi

)2

xirxis

]
= −

n∑
i=1

Wixirxis
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Let the expected information matrix

A (β) =

[
−E

(
∂2l

∂βj∂βk

)]
j,k

= XTX ∈ Rp×p (2.19)

Where W = diag(W1p, . . . ,Wn) ∈ Rn×n and X=[x1, x2, . . . ,xn] ∈ Rn×p. The Fisher

scoring method for new estimatiomn is given by

β̂
(m+1)

= β̂
(m)

+A−1
(
β̂
(m)
)
s
(
β̂
(m)
)

(2.20)

2.1.2.3 Fisher’s Scoring as Iteratively Weighted Least Squares

Fisher’s scoring method can be shown as iteratively weighted least squares. (2.20) can

be written as

A
(
β̂
(m)
)
β̂
(m+1)

= A
(
β̂
(m)
)
β̂
(m)

+ s
(
β̂
(m)
)

(2.21)

=⇒
(
A
(
β̂
(m)
)
β̂
(m+1)

)
j

=

p∑
s=1

Ajs

(
β̂
(m)
)
β̂(m)
s + sj

(
β̂
(m)
)

=

p∑
s=1

n∑
i=1

Wixijxisβ̂
(m)
s +

n∑
i=1

[
(yi − µi)
V ar (yi)

∂µi
∂ηi

xij

](m)

=

p∑
s=1

n∑
i=1

W
(m)
i xijxisβ̂

(m)
s +

n∑
i=1

W
(m)
i (yi − µ

(m)
i )

∂η
(m)
i

∂µ
(m)
i

xij

=

n∑
i=1

W
(m)
i xij

[
p∑
s=1

xisβ̂
(m)
s +

(
yi − µ(m)

i

)
)
∂η

(m)
i

∂µ
(m)
i

]

=
n∑
i=1

W
(m)
i xij

[
η
(m)
i + (yi − µ

(m)
i )

∂η
(m)
i

∂µ
(m)
i

]

Consider the adjusted dependent variable, Zi defined by

Z
(m)
i = η

(m)
i + (yi − µ

(m)
i )

∂η
(m)
i

∂µ
(m)
i

(2.22)

This gives (
A
(
β̂
(m)
)
β̂
(m+1)

)
j

=

n∑
i=1

W
(m)
i xijZ

(m)
i (2.23)

Also (
A
(
β̂
(m)
)
β̂
(m+1)

)
j

=

p∑
s=1

Ajs

(
β̂
(m)
)
β̂(m+1)
s

=

p∑
s=1

n∑
i=1

W
(m)
i xijxisβ̂

(m+1)
s =

n∑
i=1

W
(m)
i xijη

(m+1)
i
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Hence,
n∑
i=1

W
(m)
i xijZ

(m)
i =

n∑
i=1

W
(m)
i xijη

(m+1)
i (2.24)

=⇒ XTW (m)Z(m) = XTW (m)Xβ(m+1) (2.25)

These equations are equivalent to an iteratively weighted least-squares estimation pro-

cedure with response Zi, covariates x1, . . . ,xp and weight function Wi = 1
V ar(yi)

(
∂µi
∂ηi

)2
.

Since g (µi) = ηi , it can be noted that Zi is the linearized form of the link function at

yi, up to the 1st order of Taylor expansion as in

g (yi) ∼= g(µi) + (yi − µi)g′(µi) (2.26)

The variance is given by

V ar
(
Z

(m)
i

)
≈ Var(yi − µ

(m)
i )

(
∂η

(m)
i

∂µ
(m)
i

)2

= Var(yi)

(
∂η

(m)
i

∂µ
(m)
i

)2

=
(
W

(m)
i

)−1
(2.27)

if η
(m)
i and µ

(m)
i are considered fixed and known.

2.1.3 Goodness of Fit in GLM

The goodness of fit of a given generalized linear model can be assessed by scaled deviance

and Pearson’s chi-square statistic [8]. The scaled deviance is defined to be twice the

difference between the maximum achievable log likelihood and the log likelihood at the

maximum likelihood estimates of the regression parameters.

The scaled deviance is defined by

D∗(Y, µ̂) = 2[l (Y,Y)− l(Y, µ̂)] (2.28)

Where l(Y, µ̂) is the log likelihood maximized over µ with µ̂ being maximum likelihood

estimates and l (Y,Y) is the log likelihood attainable in saturated model with µ̂i = Ŷi.

For specific distributions, this can be expressed as.

D∗ (Y, µ̂) =
D (Y, µ̂)

φ
= 2[l (Y,Y)− l(Y, µ̂)] (2.29)

Where D is the deviance. Another popular measure for is the generalized Pearson X2

statistic given by

X2 =
n∑
i=1

[
(yi − µ̂i)

2

V (µ̂i)

]
(2.30)

Both the deviance and the generalized Pearson X2 follow χ2
n−k distributions for Normal

linear models where k is the number of unkonown parameters. For all other GLMs



Chapter 2. Background 10

general asymptotic results are available [10]. However, for finite number of observations,

no theoretical results have been established on whether D∗ or X2 is performing better.

The deviance has a general advantage as a measure of discrepancy in that it is additive

for nested sets of models if maximum likelihood estimates are used, whereas X2 in

general is not. However, X2 may sometimes be preferred because of its more direct

interpretation.

2.2 Poisson Regression for Count Data

Poisson regression is considered as the basic count model upon which most of the other

count models are based. If the discrete random variable, Y is Poisson distributed with

parameter µ, then Y has density

Pr [Y = y] =
e−µµy

y!
,y = 0, 1, 2, . . . (2.31)

where E [Y ] = V ar [Y ] = µ. By allowing µ to depend on covariates, Poisson regression

model is derived. Let, yi be the ith observed number of occurrences of an event of

interest, and xi be the vector of linearly independent covariates that are assumed to

determine yi. A regression model based on this distribution is attained by conditioning

the distribution of yi on a vector of covariates, xi = [xi0, . . . , xip]
T . That is, yi given

xi is Poisson distributed with density

f(yi|xi) =
e−µiµyii
yi!

, yi = 0, 1, 2, . . . (2.32)

From where it can be shown that (See later Section 2.2.1.3),

E (yi|xi) = V ar (yi|xi) = µi (2.33)

Here µi = µ (xi,β) is a continous function of covariates xi and parameters β. The mean

variance equality is one main feature of Poisson distribution. For the Poisson MLE, it can

be shown [2] that consistency requires correct specification of the conditional mean. It

does not require that the dependent variable Y be Poisson distributed. Valid statistical

inference using default computed maximum likelihood standard errors and t statistics

requires correct specification of both the conditional mean and variance. In most cases,

actual variance exceeds estmated mean and overdispersion occurs for practical data.

In those situation, we should be able to detect overdisperon and go for alternatives of

Poisson regression.

In Section 2.2.1, Poisson regression model is discussed in GLM framework as a member

of exponetial family of ditribution with derivition of important properties and Poisson
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MLE. In Section 2.2.2, Poisson overdispersion is defined with a brief discussionoo on its

detection and available solutions.

2.2.1 Poisson Model in GLM Framework

Poisson model is a member of an exponential family of distributions. Therefore, methods

in the framework of the generalized linear model (GLM) [8] are readily applied. In

GLM framework, the random component yi ∼ Poisson (µi), i = 1, 2, . . . , n. Let the

systematic component, linear in covariates be given by

ηi= xi
Tβ =

∑
j

xijβj (2.34)

And the link function for Poisson model is log-link expressed as

g (µi) = log µi (2.35)

The following subsections we will obtain some important relations for Poisson model in

GLM framework.

2.2.1.1 As a Member of Exponential Family of Distribution

We need to compare the log pdf of Yi to exponential family form as in (2.7). From

taking log on both sides of (2.32) we can write

li = log f(yi|xi) = yi logµi − µi − log yi! (2.36)

Comparing with (2.7)

θi = logµi

b (θi) = µi = eθi

a (φ) = 1

c (yi, φ) = log yi!

2.2.1.2 Link Function

The link function,

g (µi) = θi = logµi = ηi = xi
Tβ (2.37)

Hence, the inverse link

g−1 (ηi) = µi = eηi = ex
T
i β (2.38)
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2.2.1.3 Conditional Mean and Variance

We can get mean and variance of yi conditioned on covariates from (2.5) and (2.6) as

E (yi|xi) = b′ (θ) = eθi = µi = ex
T
i β (2.39)

V ar (yi|xi) = b′′ (θ) a (φ) = eθi = µi = ex
T
i β (2.40)

Therefore, mean-variance equality holds.

E (yi|xi) = V ar (yi|xi) = µi = eηi = ex
T
i β (2.41)

The two components of variance for Poisson GLM are found to be, variance function

V (µi) = µi (2.42)

and dispersion parameter

a (φ) = φ = 1 (2.43)

2.2.1.4 Maximum Likelihood Estimation in Poisson GLM

As we derived in Section 2.1.2, the MLE of β = [β0, . . . , βp]
T under GLM is the solution

the system of the score equations given by

s (β) = [s0 (β) , s1 (β) , . . . ,sp (β)]T = 0 (2.44)

Where the jth score equation is given by

sj (β) =
∂l(y,β)

∂βj
=

n∑
i=1

[
(yi − µi)xij
V ar(yi)

∂µi
∂ηi

]
= 0 (2.45)

For yi ∼ Poisson (µi), we have found µi and V ar(yi) in earlier section. From (2.38),

since µi = eηi we get
∂µi
∂ηi

=
∂ (eηi)

∂ηi
= eηi = exi

Tβ (2.46)

Putting the values of µi, V ar(yi)and ∂µi
∂ηi

as functions covariates we get,

sj (β) =
n∑
i=1

[
(yi − exi

Tβ)xij

exiTβ
exi

Tβ

]
= 0

=⇒
n∑
i=1

[
(yi − e

xi
Tβ)xij

]
= 0, j= 0, 1, 2, . . . , p (2.47)

These system of the score equations are called the MLE equationa of β for Poisson

GLM. They can solved by using an iterative algorithms such as Newton-Raphson or



Chapter 2. Background 13

Fisher scoring. With Newton-Raphson method, if β̂
(m)

be the current estimation to the

solution of s (β) = 0, then the next approximation

β̂
(m+1)

= β̂
(m)
−
[

∂2l

∂βj∂βk

]−1
β=β̂

(m)
s
(
β̂
(m)
)

(2.48)

Where is
[

∂2l
∂βj∂βk

]
the matrix of second derivatives of l evaluated at the current iteration

and its element for Poisson. From (2.18) we get

∂2l

∂βr∂βs
=

n∑
i=1

[
(yi − µi)

∂

∂βs

(
xir

V ar (yi)

∂µi
∂ηi

)
− 1

V ar (yi)

(
∂µi
∂ηi

)2

xirxis

]

=
n∑
i=1

[
(yi − e

xi
Tβ)

∂

∂βs

(
xir

exiTβ
exi

Tβ

)
− 1

exiTβ

(
exi

Tβ
)2
xirxis

]

=⇒ ∂2l

∂βr∂βs
= −exiTβxirxis (2.49)

Fisher scoring method uses expected information A (β) =
[
−E

(
∂2l

∂βr∂βs

)]
instread.

From (2.19), the element of A (β)

Ajk = −E
(

∂2l

∂βr∂βs

)
= +

n∑
i=1

[
1

V ar (yi)

(
∂µi
∂ηi

)2

xirxis

]
= exi

Tβxirxis (2.50)

Therefore, new estimation in this method is given by

β̂
(m+1)

= β̂
(m)

+ A−1(β̂
(m)

)s
(
β̂
(m)
)

(2.51)

It is easily understandable from (2.48)(2.51) that Newton-Raphson and Fisher scoring

method are equivalent in case of Poisson. Finally an iterative weighted least-squares

estimation procedure can be formed based on any of the two methods [8].

2.2.2 Overdispersed Poisson Model

When the dispersion of the observations is greater than that predicted by the Poisson

model, i.e. V ar(Y ) > E(Y ), the phenomenon is called overdispersion or extra-Poisson

variation. A major drawback of Poisson regression is the model restricts the variance

of the data to be equal to the mean, conditional on explanatory variables. As we

have seen, for Poisson regression model, the variance function equals to mean and the

dispersion parameter is fixed to one, that is V ar (y) = φ.V (µ(x)) = 1.µ (x) = µ (x) =

E(y).- Frequently, however the estimated dispersion parameter, after fitting an otherwise

acceptable model, exceeds 1. In such cases, Poisson may underestimate the standard

errors and overstate the significance of the regression parameters, and consequently,

giving misleading inference about the regression parameters. Overdispersion may result
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from neglected or unobserved heterogeneity that is not well captured by the covariates

in the conditional mean function. To model overdispersion, many alternatives to Poisson

have been suggested. The typical approach to handle overdispersion can be looking for

a distribution that fits data. Negative binomial regression model have been approached

frequently to model overdispersion. For example, if heterogeneity is gamma distributed,

then the count data will be negative binomial distributed. However, even when the

variance and mean of the assumed negative binomial distribution are correctly specified,

if the distribution is not in fact the negative binomial, the maximum likelihood estimator

is inconsistent. Moreover, the resulting compound distribution takes no simple form and

approximate methods of estimation are often used [3]. In next section we will have a

brief introduction on negative binomial regression and two of its forms.

When the probability distribution for random variable cannot be properly specified

with any known formal model, the method of MLE cannot give estimates of the param-

eters. Wedderburn’s Quasi-likelihood model allows the mean-variance relationships to

be relaxed by letting variance to be inflated by a proportionality constant φ [11]. For

moddleing overdispersion, it is suggested that

V ar (y) = φµ(x) (2.52)

where φ, the dispersion parameter is assumed to be a constant greater than 1. φ can be

estimated using

φ̂ =
X2

n− p
=

1

n− p

n∑
i=1

[
(yi − µ̂i)

2

µ̂i

]
(2.53)

Where the generalized Pearson X2 statisitic. Many forms of variance function and

dispersion parameter and also their combination have been suggested in literature to

model overdispersion in data and detect the significance of overdispersion to take into

account. Cameron and Trivedi introduced the general formulation V ar (y) = µ(x) +

λµ(x)l for given l where the distribution for y, may not necessarily be specified [6].

NB-2 variance function given by V ar (y) = µ(x) + λµ(x)2 is a special case with l = 2

which is found to be the variance for traditional negative binomial regression. The value

l = 1 corresponds to the NB-1 that results in variance being linearly proportional to

mean, V ar (y) = µ (x) (1 + λ) that is equivalent to V ar (y) = φµ(x) in (2.52). Lawless

explained the functional form of NB-2 variance function can arise from a mixed Poisson

model, which more general than negative binomial distribution if some assumptions are

relaxed [12]. Lee and Nelder combined the two approaches and proposed the variance

function of the form V ar (y) = φµ (x) + λµ(x)2 [13]. All these approaches use log-link

function and same form of mean but uses different forms of variance function resulting

in varying result in estimation and inference.

Among the many reasons for overdispersion are an incorrect model, an incorrect dis-

tributional specification, incorrect variance functions, positive correlation among the
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observations, and so forth. In short, correcting an overdispersion problem, if it ex-

ists, requires the appropriate remedy. For example, Poisson-distributed data appear

overdispersed relative to a Poisson model with regressors when an important regressor

is omitted. If the overdispersion is not significant enough and Poisson assumption is still

acceptable, Poisson regression is more desirable for its features. It is very necessary to

have a systematic way to determine when they apply. Therefore, in this work, formal

overdispersion tests and related statistics for detecting deviation from Poisson assump-

tion have been discussed that call for alternative approaches if overdispersion indecating

parameter is found to be significant. These tests will be discussed in Chapter 3. In the

next section of background, we are going to get a brief introduction on negative bino-

mial regression, which are alternative to Poisson regression for count data in presence

of overdispesion, to understand the tests discussed in this work.

2.3 Negative Binomial Regression

When the variance of Y is appears to increase faster than the Poisson model allows, an

option is to fit a parametric model that is more dispersed than the Poisson. A popular

choice is the negative binomial model. The negative binomial model is based on an

underlying probability distribution function (PDF) similarly as the Poisson model. The

traditional negative binomial regression model, termed as NB-2 by Cameron and Trivedi

[6], is derived from a Poisson-gamma mixture distribution.

Suppose that yi ∼ Poisson (νiµi (xi, β)). Now if each νi is assumed to follow a gamma

distribution with E (νi) = 1 and V ar (νi) = α , the Marginal distribution of yi given

xi has the PDF [3, 12],

f (yi, µi, α | xi) =
Γ
(
yi + α−1

)
yi!Γ (α−1)

(
αµi

1 + αµi

)yi( 1

1 + αµi

)α−1

, yi = 0, 1, 2, . . . (2.54)

That is then yi ∼ NB (µi (xi, β) , α). Here mean E (yi|xi) = µi and variance V ar (yi|xi) =

µi(1 + αµi) which is shown later in Section 2.3.2. Here α can account for inequality of

mean and variance as compared to Poisson. If α→ 0, than yi becomes standard Poisson

distributed random variable [2, 3]. For NB-2 regression, log-link function is assumed

same as Poisson. That is

g (µi) = log µi = ηi= xi
Tβ (2.55)

Therefore, from the inverse of link, the relationship between mean and covariates can

be written as

E (yi|xi) = µi = g−1 (ηi) = eηi = ex
T
i β (2.56)

And the variance

V ar (yi|xi) = µi (1 + αµi) = ex
T
i β
(

1 + αex
T
i β
)

(2.57)
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The score for NB-2 can be obtained from mean and variance using (2.14),

sj (β) =
∂l

∂βj
=

n∑
i=1

(yi − ex
T
i βxij(

1 + αex
T
i β
)
 (2.58)

Where j = 0, 1, 2, . . . , p. Thus, the MLE of β = [β0, . . . , βp]
T is the solution the system

of the score equations given by s (β) = 0.

NB-2 is not directly derived from the canonical form of negative binomial pdf in (2.54).

The canonical negative binomial is deonted as NB-C [3]. In expressing the NB-2 as a

GLM, first NB-C must be derived with its canonical link. Derivations related to NB-C

is presented in Section 2.3.1. An NB-2 model is created by converting the canonical link

and inverse link in the GLM derived directly from NB-C to log-link form (See Section

2.3.2).

It is an important feature of NB-2 that it can be estimated using a standard maximum

likelihood function, or it can be estimated as a member of the family of generalized linear

models (GLM). A negative binomial model is a GLM only if its heterogeneity parameter,

α is entered into the generalized linear models algorithm as a constant. There are very

good reasons to prefer the NB-2 parameterization of the negative binomial, primarily

because it is suitable as an adjustment for Poisson overdispersion. The NB-C form is

not interpretable as a Poisson type model, even though it is the canonical form derived

directly from the PDF. There are many other forms. Various forms of negative binomial

distibution and regression models can be found in detail in [3].

2.3.1 NB-C GLM

Now let us derive the canonical form of the negative binomial GLM derived directly

from the PDF in (2.54) symbolized as NB-C. From the definition of gamma function,

Γ
(
yi + α−1

)
= Γ

(
α−1

) yi−1∏
t=0

(
t+ α−1

)
,

=⇒
Γ
(
yi + α−1

)
Γ (α−1)

=

yi−1∏
t=0

(
t+ α−1

)
(2.59)

Taking log on both sides,

log
Γ
(
yi + α−1

)
Γ (α−1)

=

yi−1∑
t=0

log
(
t+ α−1

)
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=

yi−1∑
t=0

logα−1 (1 + αt)

=

yi−1∑
t=0

logα−1 +

yi−1∑
t=0

log (1 + αt)

= yilogα−1+

yi−1∑
t=0

log (1 + αt)

= −yilogα+

yi−1∑
t=0

log (1 + αt)

Therefore,

log
Γ
(
yi + α−1

)
Γ (α−1)

= −yilogα+

yi−1∑
t=0

log (1 + αt) (2.60)

Taking log on both sides of (2.54) and substituting (2.60) we get the log density for ith

observation,

li = log f (yi, µi, α | xi)

=

yi−1∑
t=0

log
(
t+ α−1

)
− log yi! +yilogα+ yilogµi − yilog (1 + αµi) −α−1log (1 + αµi)

= yilogµi −
(
yi + α−1

)
log (1 + αµi) + yilogα +

yi−1∑
t=0

log
(
t+ α−1

)
− log yi!

Summimg for n independent obsrevations, the log likelihood,

l (µ, α;y) =

n∑
i=1

li (µi, α; yi)

=

n∑
i=1

[
yilogαµi −

(
yi + α−1

)
log (1 + αµi) +

yi−1∑
t=0

log
(
t+ α−1

)
− log yi!

]

=

n∑
i=1

[
yilog

αµi
(1 + αµi)

− α−1 log (1 + αµi) +

yi−1∑
t=0

log
(
t+ α−1

)
− log yi!

]
(2.61)

Comparing with exponential form for known α, we get the link function

g (µi) = θi = log
αµi

(1 + αµi)
= −log

(
1

αµi
+ 1

)
(2.62)

Hence inverse link

g−1 (θi) = µi =
1

α(e−θi − 1)
(2.63)

Again

b (θi) =
1

α
log (1 + αµi) (2.64)
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Mean can be µi = 1
α(e−θi−1) checked with b′ (θi)

µi = b′ (θi) =
∂b

∂µi
.
∂µi
∂θi

=
α

α (1 + αµi)
.
−1
(
−e−θi

)
α(e−θi − 1)

2

=
1

1 + αµi
.

1

α (e−θi − 1)

(
1 +

1

(e−θi − 1)

)
=

1

1 + αµi
. µi . (1 + αµi) = µi

Variance function,

V (µi) = b
′′

(θi) =
∂

∂θi
(µi) =

∂

∂θi

(
1

α(e−θi − 1)

)

=
−1
(
−e−θi

)
α(e−θi − 1)

2 = µi (1 + αµi) = µi
2 + αµi

The dispersion parameter for NB-C is one.

Let the systematic component, linear in covariates is given by

ηi= xi
Tβ =

∑
j

xijβj

Hence we get,

g (µi) = θi = log
αµi

(1 + αµi)
= −log

(
1

αµi
+ 1

)
= ηi= xi

Tβ (2.65)

E (yi|xi) = µi =
1

α (e−θi − 1)
=

1

α (e−ηi − 1)
=

1

α
(
e−xiTβ − 1

) (2.66)

V ar (yi|xi) =
e−ηi

α(e−ηi − 1)2
=

e−xi
Tβ

α
(
e−xiTβ − 1

)2 (2.67)

Finally, the log likelihood becomes as a function of covariates,

l (µ, α;y)

=
n∑
i=1

[
yilogxi

Tβ − α−1 log

(
1 + α

1

α
(
e−xiTβ − 1

)) +

yi−1∑
t=0

log
(
t+ α−1

)
− log yi!

]

=

n∑
i=1

[
yilogxi

Tβ +
1

α
log
(

1− exiTβ
)

+

yi−1∑
t=0

log
(
t+ α−1

)
− log yi!

]
(2.68)

To get the score equation we obtain,

∂µi
∂ηi

=

∂

(
1

α(e−ηi−1)

)
∂ηi

=
e−ηi

α(e−ηi − 1)2
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Hence the jth score is given by

sj (β) =
∂l

∂βj
=

n∑
i=1

[
(yi − µi)xij
V ar(yi)

∂µi
∂ηi

]

=

n∑
i=1

 (yi − µi)xij
e−xi

T β

α
(
e−xi

T β−1
)2

e−xi
Tβ

α
(
e−xiTβ − 1

)2


=
n∑
i=1

[
(yi −

1

α
(
e−xiTβ − 1

))xij

]

=
n∑
i=1

[
(yi +

exi
Tβ

α (eηi − 1)
)xij

]

Where j = 0, 1, 2, . . . , p. Thus, for NB-C, similarly the MLE of β = [β0, . . . , βp]
T is

the solution the system of the score equations given by s (β) = 0 that is

sj (β) =
∂l

∂βj
=

n∑
i=1

[
(yi +

exi
Tβ

α
(
exiTβ − 1

))xij

]
= 0, j = 0, 1, 2 . . . , p (2.69)

We also get

∂l

∂α
=

n∑
i=1

[
1

α2

{
log
(

1− exiTβ
)

+

yi−1∑
t=0

1

(t+ α−1)2

}]
(2.70)

∂2l

∂α∂βj
= −

n∑
i=1

[
exi

Tβxij

α2
(
exiTβ − 1

)] (2.71)

∂2l

∂βk∂βj
= −

n∑
i=1

[
exi

Tβxijxik

α
(
exiTβ − 1

)2
]

(2.72)

The NB-C form is not interpretable as a Poisson type model even though it is the

canonical form derived directly from the PDF [3]. Therefore, NB-2 parameterization is

preferred as for adjusting Poisson overdispersion.

2.3.2 NB-2 GLM

For NB-2 regression, log-link function is assumed instead of usual canoocal link in (2.65).

That is

g (µi) = θi = logµi = ηi=xi
Tβ (2.73)

Therefore, from the inverse of link, the relationship between mean and covariates can

be written as

E (yi|xi) = µi = g−1 (θi) = eηi = ex
T
i β (2.74)
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And the variance function stays

V ar (yi|xi) = µi (1 + αµi) = ex
T
i β

(
1 + αex

T
i β
)

(2.75)

Similarly,
∂µi
∂ηi

=
∂ (eηi)

∂ηi
= eηi = exi

Tβ (2.76)

So log likelihood in (2.65) substitutes the inverse log-link, µi = eηi = ex
T
i β to get NB-2

log likelihood,

l (µ, α;y)

=

n∑
i=1

yilog
αex

T
i β(

1 + αex
T
i β
) − α−1log

(
1 + αex

T
i β
)

+

yi−1∑
t=0

log
(
t+ α−1

)
− log yi!


(2.77)

Hence the jth score is given by

sj (β) =
∂l

∂βj
=

n∑
i=1

[
(yi − µi)xij
V ar(yi)

∂µi
∂ηi

]

=
n∑
i=1

 (yi − ex
T
i β )xij

ex
T
i β

(
1 + αex

T
i β
)exTi β



=

n∑
i=1

(yi − ex
T
i β )xij(

1 + αex
T
i β
)


Where j = 0, 1, 2, . . . , p. Therefore, the MLE of β = [β0, . . . , βp]

T for NB-2 is the

solution the system of the score equations

sj (β) =
∂l

∂βj
=

n∑
i=1

[
(yi − µi)xij
V ar(yi)

∂µi
∂ηi

]
=

n∑
i=1

(yi − ex
T
i β )xij(

1 + αex
T
i β
)

 = 0, j = 0, 1, 2 . . . , p

(2.78)

The NB-2 heterogeneity parameter, α, can model Poisson overdispersion, or extra cor-

relation. However, The above restructured version (2.78) of NB-C which is called the

maximum likelihood parameterizations of the NB-2 is an approximation. However, if

only regression is of interest, quasi-likelihood approach with log-link and NB-2 variance

is found more easy to handle.

2.4 Partial Score Statistics from Negative Binomial Model

In this section, we will derive the partial score statistic, S which the basis for the tests for

detecting Poisson overdispersion. From section (2.3) we recall yi ∼ Poisson (νiµi (xi,β)),
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where E (νi) = 1 and V ar (νi) = α, has the conditional variance of the form,

V ar (yi|xi) = µi + αµ2i (2.79)

We also recall the log likelihood of yi ∼ NB(µi, α) as a function of α.

l (α) =
n∑
i=1

[
yilogαµi −

(
yi + α−1

)
log (1 + αµi) +

yi−1∑
t=0

log
(
t+ α−1

)
− log yi!

]
(2.80)

It can be shown that, for α = 0, (2.80) reduce to Poisson log likelihood as in (2.34).

For detecting negative binomial departures, we let yi ∼ NB(µi, α) as our more general

alternative model to test against Poisson null model. The data can be said to have

overdispersion for large positive values of α. Therefore, the hypothesis testing terms,

H0 : α = 0

V s. H1 : α > 0.

Here we somewhat follow the steps by Collings and Margolin [5] to determine a partial

score test for this problem. Now, the third term of (2.80) can be written as,

yi−1∑
t=0

log
(
t+ α−1

)
=

yi−1∑
t=0

logα−1 (1 + αt) =

yi−1∑
t=0

logα−1 +

yi−1∑
t=0

log (1 + αt)

= −yilogα+

yi−1∑
t=0

log (1 + αt)

Replacing the value in (2.80),

l (α) =

n∑
i=1

[
yilogαµi −

(
yi + α−1

)
log (1 + αµi) +−yilogα+

yi−1∑
t=0

log (1 + αt)− log yi!

]

=

n∑
i=1

[
yilogµi −

(
yi + α−1

)
log (1 + αµi) +

yi−1∑
t=0

log (1 + αt)− log yi!

]

=

n∑
i=1

[
yilogµi − yilog (1 + αµi)− α−1

{
αµi −

(αµi)
2

2
+ . . .

}
+

yi−1∑
t=0

log (1 + αt)− log yi!

]

=

n∑
i=1

[
yilogµi − yilog (1 + αµi)− µi −

αµ2i
2

+ . . .+

yi−1∑
t=0

log (1 + αt)− log yi!

]
From it we can also show,

l (0) =

n∑
i=1

[yilogµi − µi − log yi!]
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If we consider µi’s known, then according to classical Neyman-Pearson theory, the most

powerful test rejects H0 for large values of l(α)− l(0).

l (α)− l (0) =
n∑
i=1

yi−1∑
t=0

[log (1 + αt)− yilog (1 + αµi)]

Since the test is not independent of α, there does not exist a uniformly most powerful

test of H0 versus H1, even when the µi’s are known. Therefore, a locally most powerful

test for H0 versus H1 can be obtained. Following Ferguson (p. 235 in [14]), the locally

most powerful test rejects H0 for large values of the score ∂l
∂α at α = 0.

∂l

∂α
=

n∑
i=1

[
− yiµi

1 + αµi
− {−µ

2
i

2
+
αµ3i

3
− . . . }+

yi−1∑
t=0

t

1 + αt

]

∂l

∂α

∣∣∣∣
α=0

=

n∑
i=1

[
−yiµi +

µ2i
2

+

yi−1∑
t=0

t

]
=

n∑
i=1

[
µ2i − 2yiµi

2
−
yi(yi − 1)

2

]

=
n∑
i=1

[
µ2i − 2yiµi + y2i

2
− yi

2

]
=

1

2

n∑
i=1

[
(yi − µi)2 − yi

]
We denote it as the partial score statistic,

S =
1

2

n∑
i=1

[
(yi − µi)2 − yi

]
(2.81)

In next chapter, we will discuss some test statistics genrated from S and their approx-

mate distributional assumption to calculate significance of parameter for overdispersion.

Chapter 3



Chapter 3

Testing for Detecting

Overdispesion in Count Data

To test Poisson overdispersion, we have to question the mean variance equality. The

model for null hypothesis is Yi ∼ Poisson (µi) where E (Yi|xi) = V ar (Yi|xi) = µi =

ex
T
i β. The natural approach is using a different form variance with an added parameter

for the alternative model maintaining the same mean. Some possible functions are

mentioned in section 3.2. In this chapter, the tests suggested by Dean and Lawless [7]

will be revised. A random effect, or mixed Poisson, model as alternative for testing

overdispersion has been conidered here. A mixed Poisson differs from Poisson by a

parameter α which is assumed to handle extra Poisson variation and results in a form of

variance not equal to mean. To check the significance of this parameter, four statistics

(have been denoted by S1, S2, Sa and Sb) are presented here. Also their approximate

distributions were discussed and compared.

3.1 Modelling Poisson Overdispersion

Let us consider, Yi ∼ Poisson (νiµi (xi,β)) where each νi has finite first and second

moment and also E (νi) = 1 and V ar (νi) = α . Then Yi can be expressed to have a

mixed Poisson distribution with the conditional mean and variance of Yi on covariates

of the forms [7],

E (Yi|xi) = µi (3.1)

V ar (Yi|xi) = µi + αµ2i (3.2)

To test Poisson model against the mixed Poisson alternative with variance as (3.2) that

include with overdispersion, Dean and Lawless [7] proposed the hypotheses

H0 : α = 0

23
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V s. H1 : α > 0.

Collings and Margolin also developed their tests agaimst same variance in (3.2) by

working from negative binomial models. We already have discussed, if νi’s are assumed

to follow a gamma distribution, then yi has a negative binomial distribution and this

form of variance is also known as NB2 variance. In next section (3.2) are going to discuss

some test statistics derived for the mentioned pair of null and alternative models. We

will focus on different forms of statistics presented that require only the null model i.e.,

Poisson model to be fitted.

3.2 Test Statistics and Limiting Distributions

Four statistics for detecting overdispersion that are presented here have originated from

partial score statistic for testing overdispersion, S as in (2.81). We have already shown

its derivation for negative binomial likelihood in Section 2.4. This statistic was obtained

from partial score or partial derivative of log-likelihood of negative binomial by Collings

and Margolin for detecting negative binomial deviation from Poisson [5]. Cameron-

Trivedi [6], Lee [15] and Dean-Lawless [7] discussed same statistic S for mixed Poisson

alternatives. We recalll the partial score statistic

S =
1

2

n∑
i=1

[
(Yi − µ̂i)2 − Yi

]
(3.3)

where µ̂i = µi

(
xi, β̂

)
, with β̂, the maximum likelihood estimate of β under the null

hypothesis, i.e., Poisson model. This statistic, which is given as T by Dean and Lawless

[7], generalizes Collings and Margolin’s statistic T ∗∗B (See (21) in [5]).

The statistic S1 (T1 in [7]) was shown by Dean and Lawless as suitably standardized

versions of S. S2 is shown by Dean and Lawless (T2 in [7]) as a generalization of both

Fisher dispersion statistic for IID Poisson models [16] and the TB and TC statistics given

by Collings and Margolin for two special cases in [5]. Finally Ta and Tb, the adjusted

score statistics presented by Dean and Lawless [7] are also discussed here. We denoted

them as Sa and Sb respectively.

3.2.1 S1

Large values of S indicate overdispersion in data as shown earlier. From standard

maximum likelihood large-sample theory, its limiting distribution for n → ∞ can be

approximated. Dean and Lawless shows that, when α = 0, S/
√

1
2

∑n
i=1 µ̂

2
i converges

in distribution to a standard normal random variable as n → ∞ (See T1 in Sec 2 of

[7]). Therefore, S/
√

1
2

∑n
i=1 µ̂i is an asymptotically equivalent standardized statistic.
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We denote it S1.

S1 =
n∑
i=1

[
(yi − µ̂i)2 − yi

]
√

2
∑n

i=1 µ̂
2
i

(3.4)

An R function of for calculating S1 is given is Appendix A (See A.1.1).

3.2.2 S2

When n is fixed and the µi’s → ∞, Collings and Margolin suggested a test of α = 0

based on

S2 =
n∑
i=1

(Yi − µ̂i)2

Y
(3.5)

where Y = 1
n

∑n
i=1 Yi. This statistic is a natural generalization of both the Fisher’s

dispersion statistic for IID Poisson models [16] and the statistics given by Collings and

Margolin for two special cases [5]. An R function of for calculating S1 is given is Appendix

A (See A.1.1). To find limiting distribution of S2, Dean and Lawless assumed n to be

fixed and let µ+ =
∑

i µi and µi’s →∞; (i = 1, . . . , n) such that µi/µ+ converges to

a positive constant [7]. They let,

S3 = n
n∑
i=1

(yi − µ̂i)2

µ+
= nµ−1+ (Y− µ̂)T (Y− µ̂) (3.6)

Where Y = [Y1, . . . , Yn]T and µ̂ = [µ̂1, . . . , µ̂n]T . S3 has the same limiting distribution

as S2 when τ = 0 since µ−1+

∑n
i=1 Yi converges in probability to 1. Dean and Lawless

showed that

µ
− 1

2
+ (Y− µ̂)

D→N (0, V ) (3.7)

Where

V = µ−1+ W
1
2 (I −H)W

1
2 (3.8)

W = diag (µ1, . . . , µn) (3.9)

H = W
1
2X
(
XTWX

)−1
XTW

1
2 (3.10)

V and H asymptotic covariance and leverage matrices for Poisson regression [17, 18].

From (3.7), the asymptotic null distribution of S3 = nµ−1+ (Y− µ̂)T (Y− µ̂) or S2 is a

linear combination of χ2
1 independent random variables (See Section 3b in [10]). In par-

ticular, S2 converges to
∑n

i=1 λiUi where the Ui’s are χ2
1 independent random variables

and the λi’s are the n eigenvalues of V [7]. This limiting distrubution gives, as special

cases, the limiting distributions of the mentioned statistics obtained by both Fisher and

Collings-Margolin.
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3.2.3 Adjusted Score Statistic Sa

Dean and Lawless adjusted the statistic S1 =
∑n

i=1
[(Yi−µ̂i)2−Yi]√

2
∑n
i=1 µ̂

2
i

for more adequate dis-

tributional assumption [7]. From (3.7), it can be show that E
{

(Yi − µ̂i)2
}

= (1− hii)µi
where hii is the ith diagonal element of leverage matrix, H. The leverages account for

the fact that the expectation of residual sum of squares
∑n

i (Yi − µ̂i)2 is slightly less than∑n
i µi after estimation of regression coefficients. We can write E

{
(Yi − µ̂i)2 − Yi

}
=

−hiiµi. Therefore they made first-order adjustment to the numerator of S1, to obtain

Sa =
n∑
i=1

[
(Yi − µ̂i)2 − Yi

]
+ ĥiiµ̂i√

2
∑n

i=1 µ̂
2
i

(3.11)

An R function of for calculating Sa is given is Appendix A (See A.1.3). Sa has the

approximate distribution N(0, 1) and is found to converge to normality considerably

faster than S1[7].

3.2.4 Adjusted Score Statistic Sb

In section 3.2.2, we saw that S2 has a limiting distribution
∑n

i=1 λiUi where the Ui’s are

χ2
1 independent random variables and the λi’s are the n eigenvalues of V . To use S2,

one can approximate Pr{S2 > t} by inserting estimates µ̂i in equations (3.8)-(3.10) to

obtain V . From which the eigenvalues of V , λi’s are found and probability for a linear

combination of χ2
1 independent random variables can be calculated (method in [19]).

Dean and Lawless presented two-moment cχ2
d approximation as follows [7]. The mean

and variance of S2’s limiting distribution are, from equations (3.8)-(3.10) as,

Asmean(S2) = n tr(V ) = nu−1+

n∑
i=1

(1− hii)µi (3.12)

Asvar(S2) = 2n2 tr(V TV ) = 2n2u−2+

n∑
i=1

n∑
j=1

(1− hij)2µiµj (3.13)

Where tr() denotes trace of a matrix. Now keeping the asymptotic mean and variance

correct, c and d for S2 ∼ cχ2
d can be approximately taken as

c = nu−1+

∑n
i=1

∑n
j=1 (1− hij)2µiµj∑n

i=1 (1− hii)µi
(3.14)

d = nu−1+

{
∑n

i=1 (1− hii)µi}2∑n
i=1

∑n
j=1 (1− hij)2µiµj

(3.15)
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A simpler approximation that implements Wilson-Hilferty transformation for χ2 vari-

ables (See Chap. 17 of [20]) can be used when it is known that d̂ ≥ 10 approximately

[7]. The approximation gives the statistic

Sb =
(

4.5d̂
) 1

2 {
(
S2

ĉd̂

) 1
3

+
2

9d̂
− 1} (3.16)

which is found to follow standard normal distribution. An R function of for calculating

Sd is given is Appendix A (See A.1.4). Sb is a convenient statistic when d̂ is large enough

but when d̂ is small one can return to the approximation S2 ∼ cχ2
d or as the linear com-

bination of χ2
1 random variables. However, probablities for both of the approximations

for S2 are complicated to calculate.



Chapter 4

Adequacy of the Distributional

Assumptions of the Statistics

4.1 A Simulation Study

A simulation study was conducted to examine the normality assumptions of the statistics

S1, Sa, Sb using R. Codes for generating the results in table 4.1 are discussed in Appendix

A (See A.2 and A.3). To demonstrate the distributional assumptions of the statistics, we

simulated some samples based on a Poisson regression model, µi = exp (β0 + β1x1i) ; (i =

1, . . . , n), for different values of n with letting [β0, β1] = [2.6, 2]. The value of covariate

x1i was obtained by picking values randomly from the interval (0,1). Here for n =

20, 30, 50, 100, 200, 300, 500 were chosen for S1 and n = 20, 30, 50, 100, 200 for Sa, Sb and

X2. For a given value of n the same covariate value was used for simuation of each

sample.

4.2 Results

Table 4.1 shows simulation results for S1, Sa, Sb and for comparison the generalized

Pearson goodness-of-fit statistic X2. 1000 samples were generated for each n and S1,

Sa, Sb and X2 are calculated. Table 4.1 shows the proportion of the time that S1 Sa,

Sb exceeded the standard normal upper 20%, 10%, 5%, and 1% points (say upper tail

probability = 0.20. 0.10, 0.05 and 0.01), and the proportion of the time that X2 exceeded

the corresponding upper percentage points for the χ2
n−2 distribution. Histograms from

the generated samples of S1 Sa, Sb for different values n are presented in Figures 4.1-4.3

repectively to get a view on their adequacy with normality assumption.

In this work, we reproduced some results of Dean and Lawless up to some higher values

of n. The results show the approximation of S1 for the range of n considered are not

28
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Table 4.1: Estimated Upper Tail Probabilities for S1, Sa, Sb and X2 based on 1,000
Samples of the Poisson regression model

Upper Tail Probability (UTP)
from Asymptotic Distribution

n 0.2 0.1 0.05 0.01

S1

20 0.104 0.049 0.032 0.01
30 0.125 0.061 0.037 0.011
50 0.127 0.072 0.039 0.01

100 0.142 0.082 0.046 0.011
200 0.156 0.077 0.04 0.012
500 0.149 0.076 0.033 0.008

Sa

20 0.144 0.075 0.043 0.012
30 0.149 0.079 0.041 0.013
50 0.165 0.094 0.058 0.013

100 0.191 0.102 0.059 0.011
200 0.197 0.109 0.051 0.011

Sb

20 0.18 0.096 0.051 0.009
30 0.186 0.102 0.048 0.016
50 0.212 0.114 0.068 0.014

100 0.19 0.088 0.05 0.014
200 0.193 0.119 0.056 0.011

X2

20 0.2008 0.1032 0.0478 0.0078
30 0.209 0.107 0.0466 0.011
50 0.208 0.1008 0.0478 0.0082

100 0.2084 0.106 0.0518 0.008
200 0.2034 0.0924 0.0464 0.0106

that satisfactory. The values are much less from the expected upper tail probablities for

standard normal specially for expected upper tail probablities greater than 0.1. From

the histograms in Figure 4.1 for S1, it is easily visible that the generated distributions are

positively skewed for all vallues of n; though the skewness is observed to decrease with

increasinng n. As Dean and Lawless suggested, Sa is not very good until n becomes fairly

large. Closely observing both the results in Table 4.1 and the histograms in FIgure 4.2,

we can conclude normality assumptions to be pretty accurate from n = 100. Sb shows

quicker convergence to standard normal distribution than Sa. The histograms in Figure

4.3 portrays the statistic Sb to come from an normality distribution for any value of

n. For both Sb and X2 the asymptotic approximations were almost accurate even for

smaller values of n.

4.3 Discussion

Among the test statistics discussed here, both test statistics Sa and Sb can be rec-

ommended for their own advantages. Definitely both are preferred from S1 for faster
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Figure 4.1: Histograms of S1 for n = 20, 30, 50, 100, 200, 500 from 1000 samples each.

convergence. In our simulation study, we have not demonstrated the asymptotic distri-

bution of S2 as linear combination of Chi square random variables. In Figures 4.1-4.3,

adequacy of the standard normal asumptions of S1, Sa and Sb are dispalyed in histograms

of the statistics for simualted observations of different sample sizes. repectively. Both

Sa and Sb evolved from a score test statistic S for no overdispersion against negative

binomial alternatives although they come from different asymptotic cases.

Sa has been derived from the adjustment of S1. S1 comes from the asymptotic case of S

with the assumption n→∞. If we compare the results for S1 and Sa, it is clear that the

adjustment from S1 to Sa definitely has resulted in faster convergence to normality. The

normality assumption for Sa was found fairly accurate from around n = 100. However,

that for S1 was not satisfactory even for n = 500.

On the other hand, Sb originates from S2 which was derived from the cases when n is

fixed and the µi’s→∞. Therefore it is expected to have similar accuracy in approximate

distribution for varying n. According to results, the normality assumption for Sb is found

to be precise for the range of n considered and for this particular Poisson regression
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Figure 4.2: Histograms of Sa for n = 20, 30, 50, 100, 200 from 1000 samples each.

equation. Definitely the data generating regression equation has decided the range of

µi’s. Therefore, it will be interesting to analyze the overall range of µi for which the

normality assumption for Sb acceptably holds and to compare with other statistics.

From the discussion we can say that Sb shows robustness in approximating standard

normal and it is quite insensitive to the value of n. On the other hand the approximation

for Sa is preferred for its computational simplicity compared to Sb. It only need the

leverage values hii, which offer useful information from the leverage matrix H [17, 18].

Calcuating Sb requires a little more work, because the n(n − 1)/2 distinct values hij ,

where (i 6= j) are also needed. Also its calculation consists of more number of equations

than Sa. As Dean and Lawless said and our results agreed; if n− p is 50 or more, than

Sa can be used in conjunction with the normal approximation for computing significance

levels. Otherwise, the use of Sb with the normal approximation is recommended. Both

S1 and S2 are attractive for their computationally simple form. However, calculating

the probability for approximate distribution S2 is tedious as it ir linear combination of

chi squares. Fo S1 the normality assumption was not found acceptable for n ≤ 500.

However, it should be checked for large sized samples.
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Figure 4.3: Histograms of S1 for n = 20, 30, 50, 100, 200 from 1000 samples each.

Though Pearson’s goodness of fit statistic X2 has shown good asymptotic approxima-

tions for all values of n and is less complicated than Sa and Sb, it is not particularly

formulated for detecting overdispersion as represented by the negative binomial alter-

natives like the other discussed here. It rather serve for assessing the goodness of the

specification for µi’s in terms of covariates within the Poisson model.

The next chapter gives some further remarks and comparisons on the advantages and

applicability of the statistics discussed.



Chapter 5

Additional Comments on the

Statistics

Here we present some comparisons and points about the applicability of the discussed

tests.

5.1 Advantages Over Likelihood Ratio and Wald Test

Likelihood ratio test and Wald test or the approximate large sample normality of the

maximum likelihood estimator α̂ to test α = 0, have been suggested in literarture

[12, 21]. Such approach requires fitting mixed Poisson or some other more general

models that include parameter for incorporating overdispersion. The tests discussed

here do not require a more comprehensive model than the Poisson to be fitted and

accurate distributional approximations are available for computing significance levels.

Also results by Lawless in [12] indicate that unless n or the µi’s are rather large, the

usual χ2 and normal approximations for the likelihood ratio statistic and α̂, respectively,

tend to underestimate substantially the evidence for overdispersion.

5.2 Power comparison of Sa, Sb, X
2 and Deviance Statistic

Both the goodness of fit statistics, Pearson’s Chi square, X2 and deviance D frequently

found application in detecting overdispersion. A power comparison for Sa, Sb, X
2 and

D for some negative binomial alternatives was performed by Dean and Lawless (Section

5 in [7]). The test hypothesis presented in Sec. 3.1 was used. For n = 15 and test size of

0.05, power of test for Poisson regression models similar to the one we considered were

calculated for different chosen values of α. According to their findings, Sa and Sb have

nearly equal power and that X2and D have nearly equal power. Also Sa and Sb up to a

33
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certain point are found more powerful than X2 or D. Finally, as α increases, the powers

for all of the four test statistics approach 1. The fact that X2 and D are not particularly

intended to test for overdispersion as represented by the negative binomial alternatives

discussed here, but rather for assessing the adequacy of the specification for µi’s within

the Poisson model explain why they are somewhat less powerful than Sa and Sb.

5.3 Correct Specification of Mean

The tests for overdispersion discussed here were developed under the assumption that the

specification of µi in terms of the covariates is correct [7] and all important regressors are

present. When regression models are fitted, they should include a careful examination

of residuals. The overall lack of fit of a Poisson model can be primarily ascribed either

to overdispersion or to misspecification of µi. In this regard, Pierce-Schafer [22] and

Williams [17] suggested that deviance residuals are preferred for assessing fitted Poisson

model. The accurate specification of µi before testing for overdispersion should be

attempted to be achieved. If there are replicate observations for at least some of the

covariate values, both overdispersion and the µi specification can be separately checked.

If we have independent observations yij ’s are such that

E (yij | xi) = µ (xi,β) = µi

And

V ar (yij | xi) = µ (xi,β) = µi + αµ2i

Then the total S2 statistic of (3.5) can be decomposed as

k∑
i=1

ni∑
j=1

(Yij−µ̂i)2

Y ++

=
k∑
i=1

ni∑
j=1

(
Yij−Y i+

)2
Y ++

+
k∑
i=1

ni
(
Y i+−µ̂i

)2
Y ++

,

Where Y i+ =
∑ni

j=1 Yij/ni and Y ++ =
∑k

i=1 niY i+/
∑k

i=1 ni. The first term on the

right side is the statistic TC studied by Collings and Margolin (Section 3 in [5]) can be

used to test α = 0 versus α > 0 with no assumption about the parametric form of µi.

If one is certain of the regression specification it may be preferable to use the entire

S2, particularly if the µi’s are small. For larger µi’s and when µi specifications are not

certain, it is better to use TC .

5.4 Limiting Distributions for Sa and Sb are Unconditional

The limiting distributions of Sa and Sb were unconditional. That means, they are not

conditional on observed values of sufficient statistics for the Poisson model parameters.



Chapter 5. Additional Comments on the Statistic 35

In a few special cases exact conditional distributions that are parameter-free and appro-

priate for S2 are available[5, 16]. However, when the µi’s →∞ with n fixed, conditional

and unconditional limiting distributions are the same [7]. So Sb can be suggested for

both conditional and unconditional significance levels. For very small sample sizes the

exact distribution of S2 can be considered, but except for the aforementioned cases

the distributions either depend on unknown model parameters or are not amenable to

calculation.



Chapter 6

Conclusion

The problem of detecting Poisson overdispersion still does not have a generally estab-

lished solution. Popular approach is to fit negative binomial or some other general model

that can accommodate overdispersion without checking whether the parameter indica-

tive to overdispersion is significant or not. However, there is no doubt about the strong

theoretical base for Poisson model in count data modelling. Poisson distribution should

be the choice in absence of overdispersion; therefore, robust statistical test is needed for

that purpose.

In this work, we discussed some test statistics based on score and evaluated them on the

basis of adequacy of their distributional assumptions. We have focused on the four test

statistics S1, S2, Sa and Sb to test mean-variance equality against inequality modelled

by NB2 variance. We discussed the derivation and approximate distribution of the test

statistics. We presented the ways to compute these statistics and their probabilities

from their suggested approximate distribution to calculate test significance. Three of

the statistics, S1, Sa and Sb had been shown to converge to standard normal as number

of observation n → ∞. We simulated samples of each of the three statistic from data

generated based on a Poisson regression equation that served as the null distribution.

A comparison was made checking the adequacies of the suggested approximations of

distributional assumptions of S1, Sa and Sb for varying n. We tabulated the proportion

of time the values of S1, Sa and Sb each exceeded the standard normal upper 20%, 10%,

5%, and 1% points. Normality assumption Sb has been found to be almost accurate

even for small values of n, Sa has shown slower convergence but normality assumption

was acceptable from n = 100. The normality assumption for Sb has shown robustness in

terms of variation of n. For values of n ≥ 100, Sa can be preferred for its less complexity.

Another feature of Sa and Sb is need of only fitting the Poisson GLM to estimateµi’s.

Also these statistics are found to be good in terms of power against negative binomial

alternatives as compared to the goodness of fit Pearson and deviance statistic [7].
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One of the main concern is all these tests are based on the assumption that the spec-

ification of µi’s in terms of the covariates is correct. Even if the data is actuaaly, im

may appear overdispersed relative to a Poisson model with regressors when an impor-

tant regressor is absent. So when applied in practical data, we should take measures to

separate the lack of fit due to misspecification of Poisson regression model and that due

to not having parameter for overdispersion.

Further assessment of S1, Sa and Sb are necessary. Since Sb possesses an assumption on

µi’s, further study should be done for checking how sensitive Sb is to variation of µi’s

specially for lower values and compared also with other statistics. These can be done by

using other values of β. We have already developed a general frame work of calculating

any of these statistics and p-values for the tests. Our next step involves generating data

from negative binomial regression for different values of α and assessing how the test

statistics perform and how they differ in giving conclusions (say p-value) to the tests.

Work is underway in that direction.



Appendix A

Source Codes

A.1 R Functions for Statistics

A.1.1 R Function for calculating S1

After we obtain µ̂i = µi

(
xi, β̂

)
, with β̂, the maximum likelihood estimate of β under

Poisson model, we can calculate S1 for a given sample by implementing (3.4) with the

ScoreS1 function in following R code. The function returns the value of S1.

#Function for Calculating S1

ScoreS1 <-function(X,YY,mu_hat){ #YY=observed Y vector ,

#mu_hat= estimated means

dnume <-sqrt(2*sum(mu_hat ^2)) # denumerator

S1<- sum(((YY-mu_hat)^2-YY)/dnume)

return(S1)

}

A.1.2 R Function for calculating S2

Similarly we can implement (3.5) to calculate S2 with the ScoreS2 function in following

R code.

#Function for Calculating S2

ScoreS2 <-function(X,YY,mu_hat){ #YY=observed Y vector ,

#mu_hat= estimated means

S2<-sum((YY - mu_hat )^2)/mean(YY)

return(S2)

}
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A.1.3 R Function for calculating Sa

The following R code gives ScoreSa function to calculate Sa implementing (3.9-3.11).

#Function for Calculating Sa

ScoreSa <-function(X,YY,mu_hat){ #YY=observed Y vector ,

#mu_hat= estimated means

nobs <-length(YY)

WW<-matrix(0,nrow = nobs ,ncol = nobs) #first a n by n zero atrix created

WW<-diag(mu_hat) #W=diag(mu_hat1 ,... ,mu_hatn)

WWR <-sqrtm(WW) #W^(1/2) Matix

hh<-WWR%*%X%*%solve(t(X)%*%WW%*%X)%*%t(X)%*%WWR #lev. matrix H

dnume <-sqrt(2*sum(mu_hat ^2)) # denumerator

Sa<-sum(((YY-mu_hat)^2-YY+diag(hh)*mu_hat)/dnume)

return(Sa)

}

A.1.4 R Function for calculating Sb

R code for ScoreSb function to calculate Sb is given below.

#Function for Calculating Sb

ScoreSb <-function(X,YY,mu_hat){ #YY=observed Y vector ,

#mu_hat= estimated means

nobs <-length(YY)

WW<-matrix(0,nrow = nobs ,ncol = nobs) #first a n by n zero matrix created

WW<-diag(mu_hat) #W=diag(mu_hat1 ,... ,mu_hatn)

WWR <-sqrtm(WW) #W^(1/2) Matix

hh<-WWR%*%X%*%solve(t(X)%*%WW%*%X)%*%t(X)%*%WWR #leverage matrix H

V<-(WWR%*%(diag(1,nobs ,nobs)-hh)%*%WWR)/sum(mu_hat) # covariance matrix V

vv1 <-sum(diag(V)) #trace(V)

vv2 <-sum(diag(t(V)%*%V)) #trace(V’V)

CC<-nobs*vv2/vv1 #c_hat

DD<-(vv1 ^2)/vv2 #d_hat

Sb<-sqrt (4.5*DD)*(( ScoreS2(X,YY,mu_hat)/(CC*DD ))^(1/3)+2/(9*DD)-1)

return(Sb)

}

To calculate Sb with (3.16), S2, ĉ and d̂ are required. For calculating ĉ and d̂ have

rewritten (3.14) and (3.15) using (3.12) and (3.13) as

c = n
tr(V TV )

tr(V )
(A.1)

d =
{tr(V )}2

tr (V TV )
(A.2)

Therefore asymptotic covariance matrix V is calculated using (3.8) to (3.10). Then

V TV matrix is calculated and traces of V and V TV are obtained summing the diagonal
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elements. Then ĉ and d̂ are calculated using the above equations. As S2 is in (3.16), the

ScoreSb function needs ScoreS2 function in Section A.1.2 to be run before.

A.2 R Codes for Estimated UTPs of S1, Sa, Sband X2

A.2.1 Estimateing UTPs of S1, Sa and Sb

library(MASS)

library(expm)

#Function for Calcualting S1

ScoreS1 <-function(X,YY,mu_hat ){ #YY=observed Y vector ,

#mu_hat=estimated means

dnume <-sqrt (2* sum(mu_hat ^2)) #denumerator

S1<- sum (((YY-mu_hat )^2-YY)/ dnume)

return(S1)

}

#Function for Calcualting S2

ScoreS2 <-function(X,YY,mu_hat ){ #YY=observed Y vector ,

#mu_hat=estimated means

S2<-sum((YY- mu_hat )^2)/ mean(YY)

return(S2)

}

#Function for Calcualting Sa

ScoreSa <-function(X,YY,mu_hat ){

nobs <-length(YY)

WW<-matrix(0,nrow = nobs ,ncol = nobs) #first a n by n zero atrix created

WW<-diag(mu_hat) #W=diag(mu_hat1 ,..., mu_hatn)

WWR <-sqrtm(WW) #W^(1/2) Matix

hh<-WWR%*%X%*% solve(t(X)%*%WW%*%X)%*%t(X)%*% WWR #leverage matrix H

dnume <-sqrt (2* sum(mu_hat ^2)) #denumerator

Sa<-sum(((YY - mu_hat )^2 - YY+diag(hh)* mu_hat )/ dnume)

return(Sa)

}

#Function for Calcualting Sb

ScoreSb <-function(X,YY,mu_hat ){

nobs <-length(YY)

WW<-matrix(0,nrow = nobs ,ncol = nobs) #first a n by n zero atrix created

WW<-diag(mu_hat) #W= diag(mu_hat1 ..., mu_hat)

WWR <-sqrtm(WW) #W^(1/2) Matix

hh<-WWR%*%X%*% solve(t(X)%*%WW%*%X)%*%t(X)%*% WWR #leverage matrix H

V<-(WWR %*%( diag(1,nobs ,nobs)-hh)%*% WWR)/sum(mu_hat) #covariance matrix V

vv1 <-sum(diag(V)) #trace(V)

vv2 <-sum(diag(t(V)%*%V)) #trace(V’V)

CC<-nobs*vv2/vv1 #c_hat

DD <-(vv1 ^2)/ vv2 #d_hat

Sb<-sqrt (4.5*DD)*(( ScoreS2(X,YY ,mu_hat )/(CC*DD ))^(1/3)+2/(9* DD)-1)

return(Sb)

}

#Function for generating random covariates

genX <-function(nobs = 20,BETA){

p=length(BETA) - 1

X<- cbind(1, matrix(runif(nobs * p), ncol = p))

return(X)

}

#Function for generating samples for a particular statistic function
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genS <-function(nobs = 20,X,BETA ,Sfun=ScoreSb ){

#Sfun: the statistic function ,e.g.,ScoreS1 , ScoreSa etc.

p=length(BETA) - 1

xb <- X %*% BETA

exb <- exp(xb)

pyf <-rpois(nobs ,exb)

outpf <- data.frame(cbind(pyf , X[,-1]))

names(outpf) <- c("pyf", paste ("x", 1:p, sep =""))

poyf <- glm(pyf ~. , family=poisson , data=outpf)

mu_hatf <-predict(poyf , type=" response ")

return(Sfun(X,pyf ,mu_hatf ))

}

#Funtion for genreting Estimated UTPs for N(0,1) distributional assumpion

Eutp <-function(nobs = 20,X,BETA ,ss=100, Sfun){

##ss=no of samples

zm<-c(rep(NA ,ss))

UTP <-cbind (0.2 ,.1 ,.05 ,.01)

tot <-c(rep(0,length(UTP)))

pz<-qnorm(1-UTP)

for(i in 1:ss ) {

zm[i] <- genS(nobs ,X,BETA ,Sfun)

pz[i]<-pnorm(zm[i],lower.tail = FALSE)

for (j in 1: length(UTP)){

if (pz[i]<UTP[j]){

tot[j]<-tot[j]+1

}

}

}

hist(zm)

e_utp=tot/ss

return(e_utp)

}

#Code for getting estimated UTPs for S1 for given model from 1000 samles

BETA= c(2.6, 3)

n_f=c(20 ,30 ,50 ,100 ,200 ,500)

df_S1 <-data.frame ()

for (i in 1: length(n_f )){

df_S1 <-rbind(df_S1 ,Eutp(nobs = n_f[i],genX(n_f[i],BETA),BETA ,ss=1000, ScoreS1 ))

}

df1_S1 <-cbind(n_f ,df_S1)

colnames(df1_S1)<-c("n","tailP_0 .20"," tailP_0 .10"," tailP_0 .05"," tailP_0 .01")

df1_S1

#Code for getting estimated UTPs for Sa for given model from 1000 samles

BETA= c(2.6, 3)

n_f=c(20 ,30 ,50 ,100 ,200)

df_Sa <-data.frame ()

for (i in 1: length(n_f )){

df_Sa <-rbind(df_Sa ,Eutp(nobs = n_f[i],genX(n_f[i],BETA),BETA ,ss=1000, ScoreSa ))

}

df1_Sa <-cbind(n_f ,df_Sa)

colnames(df1_Sa)<-c("n","tailP_0 .20"," tailP_0 .10"," tailP_0 .05"," tailP_0 .01")

df1_Sa

#Code for getting estimated UTPs for Sb for given model from 1000 samples

BETA= c(2.6, 3)

n_f=c(20 ,30 ,50 ,100 ,200)
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df_Sb <-data.frame ()

for (i in 1: length(n_f )){

df_Sb <-rbind(df_Sb ,Eutp(nobs = n_f[i],genX(n_f[i],BETA),BETA ,ss=1000, ScoreSb ))

}

df1_Sb <-cbind(n_f ,df_Sb)

colnames(df1_Sb)<-c("n","tailP_0 .20"," tailP_0 .10"," tailP_0 .05"," tailP_0 .01")

df1_Sb

A.2.2 Estimateing UTPs of X2

library(MASS)

tail_prop_P <-function(nobs = 20,M=1,UTP =0.05 ,ss =100){

BETA= c(2.6 ,2)

p=length(BETA) - 1

X<- cbind(1, matrix(runif(nobs * p), ncol = p))

xb <- X %*% BETA

exb <- exp(xb)

Pchif=c(rep(NA ,ss))

chi_utp=qchisq(p=1-UTP ,df=nobs -length(BETA))

ex_utp =0

for(i in 1:ss ) {

pyf <-rpois(nobs ,M*exb)

outpf <- data.frame(cbind(pyf , X[,-1]))

names(outpf) <- c("pyf", paste ("x", 1:p, sep =""))

poyf <- glm(pyf ~. , family=poisson , data=outpf)

mu_hatf <-predict(poyf , type=" response ")

Pchif[i]<-sum((pyf - mu_hatf )^2/ mu_hatf)

if(Pchif[i]>chi_utp ){

ex_utp <-ex_utp +1

}

}

e_utp=ex_utp/ss

return(e_utp)

}

n_f=c(20 ,30 ,50 ,100 ,200)

tailP_0.20<-c(rep(NA,length(n_f)))

tailP_0.10<-c(rep(NA,length(n_f)))

tailP_0.05<-c(rep(NA,length(n_f)))

tailP_0.01<-c(rep(NA,length(n_f)))

for (i in 1: length(n_f )){

tailP_0 .20[i]<-tail_prop_P(nobs = n_f[i],M=1,UTP=.20,ss =5000)

tailP_0 .10[i]<-tail_prop_P(nobs = n_f[i],M=1,UTP=.10,ss =5000)

tailP_0 .05[i]<-tail_prop_P(nobs = n_f[i],M=1,UTP=.05,ss =5000)

tailP_0 .01[i]<-tail_prop_P(nobs = n_f[i],M=1,UTP=.01,ss =5000)

}

tail_tabp <-data.frame(n_f ,tailP_0 .20, tailP_0 .10, tailP_0 .05, tailP_0 .01)
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