
EAST WEST UNIVERSITY 
RMI Based Distributed Query Processing 

 

 

                                        Submitted By 
                                                         Avirupa Roy Talukder 

ID: 2011-2-60-001 

Alok Kumar Roy 

ID: 2011-2-60-045 
 

 

                                                           Supervised by 
                                                           Dr. Shamim Akhter 

     Assistant Professor 
 

Department of Computer Science & Engineering 

East West University 
 

 

 

 

 

 

The project has been submitted to the Department of the Computer Science & 
Engineering at East West University in the partial fulfillment of the requirement 
for the degree of Bachelor of Science in Computer Science and Engineering. 

  



i 
 

DECLARATION 

 

The project has been submitted to the Department of the Computer Science & Engineering. East 
West University in the partial fulfillment of the requirement for the degree of Bachelor of 
Science in Computer Science & Engineering performed by me under supervision of Assistant 
Professor Dr. Shamim Akhter, Department of Computer Science & Engineering at East West 
University. This is also needed to certify that, the project work under the course ‘Project 
(CSE497)’. We, hereby, declare that this project has not been submitted elsewhere for the 
requirement of any degree or diploma or any other purposes. 

 

 

 

 

 

 

Signature of the candidates 

 

 

 

 

 

 

-------------------------------      ------------------------------- 

 

 

(Avirupa Roy Talukder)      (Alok Kumar Roy) 

 

 

 

 

 

 

 



ii 
 

LETTER OF ACCEPTANCE 

 

The Project entitled RMI Based Distributed Query Processing submitted by Avirupa Roy 
Talukder, Id: 2011-2-60-001 and Alok Kumar Roy, Id: 2011-2-60-045 to the Department of 
Computer Science and Engineering, East West University, Dhaka, Bangladesh is accepted as 
satisfactory for the partial fulfillment of the requirement for the degree of Bachelor of Science in 
Computer Science and Engineering on August 10, 2016. 

 

 

 

 

 

 

Board of Examiners 

 

1. ----------------------------------  
Dr. Shamim Akhter  
Assistant Professor                    (Supervisor)  
Department of Computer Science & Engineering  
East West University, Dhaka, Bangladesh 

 
 
 
 
 
 
 
 
 
 
 

2. ----------------------------------  
Dr. Md. Mozammel Huq Azad Khan  
Professor & Chairperson          (Chairperson)  
Department of Computer Science & Engineering  
East West University, Dhaka, Bangladesh 
 

 

 

 



iii 
 

Abstract 

 

In this project, we have developed distributed query processing system with Java RMI based 
system. The system is developed for the computer that doesn’t have any Oracle/SQL Server or 
Database and does not have enough memory to afford Oracle/SQL Server. However, we can 
achieve benefit of the Database/SQL server. Here, we introduce the necessary functions to 
implement the project.  
 
RMI (Remote Method Invocation) is used to call the distributed function to make server side 
Database connection. RMI based Distributed Query Processing is a smart system to connect two 
computers under a network. At first, we create client and server. There is a database in server 
side to connect the server with Database through JDBC (mysql-connector.jar).The client sends 
its query to the server and the sever checks the database for processing the query and after the 
query processing results send back to clients. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENT 

 
 
 
First of all we express our gratefulness to the Almighty, without His divine blessing it would not 
be possible to complete this project successfully. It has been a great pleasure to us to develop 
RMI Based Distributed Query Processing. We have gathered sufficient knowledge and 
experience during this project. 
 
 
 
We would like to thank our honorable teacher and supervisor of this project, Dr. Shamim Akhter, 
Assistant Professor, Department of Computer Science and Engineering, East West University 
who guided us to proper analysis of the system and helped to develop an elegant and efficient 
system. He does not only give us the great idea, but also encouraged us to seek out the clearest 
and deepest description of theoretical ideas and experimental findings. We are very grateful to 
him for his continuous support, advice and guidance. It was a great pleasure to study and work 
with gifted people like him who influenced us in many ways. 
 
 
 
Finally, we would like to convey our special thanks to our parents whom have always given us 
tremendous support. Without their love and encouragement, we would not had achieve this far.



v 
 

TABLE OF CONTENTS 

 
Title                                                                                                               Page 

 
Declaration           i 

Letter of Acceptance          ii 

Abstract           iii 

Acknowledgement          iv 

Table of Contents          v-viii 

Chapter 01   Introduction      01-03 

 
1.1 Overview          02 

1.2  Motivation          02 

1.3  Objective          02 

1.4 Contribution          02 

1.4  Organization of the project        03 

 
Chapter 02   Background Study     04-07 
 
2.1 Distributed System         05 

2.2 What is RMI          05 

2.3 Participating process         06 

2.4 How RMI works         06 

2.5 Advantages          07 

 
Chapter 03   RMI Implementation     08-23 
 
3.1  Java RMI: Hello World (in 1 PC)              09 



vi 
 

3.2  Java RMI: Adding 2 Numbers (Between 2 PCs)     13 

3.3  Java RMI: String Passing (Between 2 PCs)      18 

 

Chapter 04   RMI with Database     24-36 
 
4.1  Setting Local host connection with Database      25 

4.2  Define the Remote Interfaces        25 

4.3  Define the Remote Classes        26 

4.4 Creating the Server         28 

4.5  Create the Java Client Program       30 

4.6 Output of the Project         35 

 
Chapter 05   Conclusion and Future Work    37-38 
 
5.1 Conclusion          38 

5.2 Future Work          38 

 

Appendix           39 

 
References           45 

 

 

 

 

 

 

 

 



vii 
 

List of Figures: 

 

Figure 2.1 RMI Architecture        5  

Figure 3.1 rmic of Hello World program       11 

Figure 3.2 Starting Registry        12 

Figure 3.3 Start server of Hello world       12 

Figure 3.4 Running Client of Hello worlds      13 

Figure 3.5 Creating class and stub file of two number     16 

Figure 3.6 Start the rmiregistry        17 

Figure 3.7 Starting server of two number addition     17  

Figure 3.8 Output of two number addition      18 

Figure 3.9 Creating Stub file of String pass program     21 

Figure 3.10 Start the registry 3001        22 

Figure 3.11 Starting the server        22  

Figure 3.12 Create class file and run the client      23 

Figure 4.1  Create class file of Addition and AdditionServer    26 

Figure 4.2  rmic Addition         28 

Figure 4.3  start rmiregistry        29 

Figure 4.4 Execution of  the server       29 

Figure 4.5        Database of Students        30 

Figure 4.6        Excecution of client        31 

Figure 4.7        Option choice window       31 

Figure 4.8        Add new record into database      32 

Figure 4.9        Inserted database        32 

Figure 4.10  Command of delete a record from database      33 

Figure 4.11 Deleted Database        33  



viii 
 

Figure 4.12 Choosing retrieve option       34 

Figure 4.13 Command of retrieve a record from database     34  

Figure 4.14 Retrieved result        35 

Figure 4.15 Choosing Update option       35 

Figure 4.16 Command of update a record into database      36 

Figure 4.17 Updated databases        36 

 

 



1 
 

 
 

 

 
 
 
 

 

 

 

 

Chapter 1 
 
 
 

Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



2 
 

1.1 Overview 
 
In this project, we propose to work with RMI and sever to solve the problem. The main reason to 
work with this system is flexibility and maintainability. In this section, we present a blend of all 
features and technologies to introduce RMI architecture. 
 
The server main task is managing network resources. We use an IP address and port number 
which plays a vital role to connect client and server. To generate the remote method client should 
connect to the server and request a method to execute. 

 
The client sends parameters to server and after getting Instruction server compute the Instruction 
and sends result to client. The client is also equipped with any device that capable to handle the 
request and response. In this project, we have developed a system that doesn’t require any 
Oracle/SQL Server. 
 
1.2 Motivation 

 
For our project we consider the query processing and show result to the client system are our 
target object. Remote Method Invocation primary task is to access remote system. We don’t 
know where the server is. We only know that we have a server and clients can access this server 
without the help of installing SQL Server.  

 
We tried to develop a system for those device whose have limitations to access Database and get 
information without install Oracle/SQL Server. 
 
1.3 Objective 

 
Specific objective of this project includes: 
 

• Study and analysis of Remote Method Invocation architecture and its existing 
features. 

• Implement a database and connect database with server. 
 

1.4 Contribution 
• To run jdk, on our respective system first we set jdk class path as an environment 

variable. 
• To run mysql connector as our respective file set file path and mysql connector as an 

class path variable. 
• Design and implementation of client which will allow user to use database without 

installing Database at their side. 
 



3 
 

1.5 Organization of the project  
 
As we try to develop a RMI Based Distributed Query Processing. First of all we define an 
interface to declares remote methods .Then Implement the remote interface and the server. 
Before that we will explain briefly about RMI registry. Then we will try to explain how client 
and server communicate with each other. We will describe how to connect JDBC with RMI. 
Next comes the Query processing discussion which will pass from client system. 
 
 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

            
Chapter 2 

 

BackGround Study 
           
 
 
 



5 
 

2.1 Distributed System 
 
A distributed system is a collection of independent computers that appears to its users as single 
coherent systems. The difference between the various computers and the way in which they 
communicate are hidden from users. An important characteristic of distributed system is that user 
and application can interact with a distributed system in a consistent and uniform way. We define 
a distributed system as one in which hardware and software components located at networked 
computers communicate and coordinate their action only by passing massage [1].  
 
2.2 What is RMI? 
 
RMI is a mechanism for communicating between two machines running Java Virtual Machines. 
It permits Java methods to refer to a remote object and invoke methods of the remote object. 
When Java code on machine A needs a service or a method, respectively, of that means object 
B on machine B it starts a remote method invocation.[2] The remote object may reside on 
another Java virtual machine, the same host or on completely different hosts across the 
network. It allows any data type .RMI allows both Client and Server to load new object types as 
required. 
 

 

                                 Figure 2.1: RMI Architecture  

 



6 
 

2.3 Participating process 
 
Client:  A client is the receiving end of a service or the requestor of a service in a client/server 
model type of system.[3] The client is located on another computer or system which has to 
access via network. In java RMI, client is a process to call a method of remote object. 
 
Server:  The system which main task is to managing network resources is called server.  To 
implement the remote methods we write this program – clients connect to the server and request 
that a method be executed. The remote methods to the client are local methods to the server. 
 
Registry Service:  A Registry Service is an application that provides the facility of registration 
& lookup of Remote stub.[3] The object registry runs on a known port (1099 by default) A server 
registers its objects with a textual name with the object registry when it starting. A client, before 
performing invoking a remote method, must first contact the object registry to obtain access to 
the remote object. 
 
Stub: A stub is proxy that stands for RMI Server on client side and handles remote method 
invocation on behalf of RMI Client.  
 
Skeleton: It is a proxy that stands for RMI client on server side and handles remote method 
invocation on RMI Server on behalf of client [3]. It unmarshalls the arguments in the request 
massages and invokes the corresponding method in the remote object. But we need not use 
skeleton because we use updated version of JDK. 
 
Bind (): This method is used to register a remote object (stub of object) in the rmiRegistry.  
 
Rebind (): This method is used to rebind the remote object in the rmiRegistry. 
 
Lookup (): This method is used to lookup remote stub in the rmiRegsitry. 
 
2.4 How RMI works 
 

 In distributed system, RMI must have to keep record of the distributed objects .That’s 
why RMI uses a network-based registry. By binding it to a name in the registry the server 
object makes a method available for remote invocation.[4] The client object can check for 
availability of an object by looking up its name in the registry. The registry acts as a 
limited central management point for RMI. The registry is simply a name repository. It 
does not address the problem of actually invoking the remote method.  

 
 The two objects may be resided on separate machines. A mechanism is used to transmit 

the client's request to call a method on the server object to the server object and provide a 
response. The code for the server object must be processed by an RMI compiler 
called rmic, which is part of the JDK.[4]  

 
 
 



7 
 

 The rmic compiler generates two files: a stub and a skeleton. The stub resides on the 
client machine and the skeleton resides on the server machine. The stub and skeleton are 
comprised of Java code that provides the necessary link between the two objects.  
 

• The stub object has to build an information block that’s consists of 
o an identifier of the remote object to be used, 
o an operation number describing the method to be called and 
o the marshalled parameters (method parameters have to be encoded into 

a format suitable for transporting them across the net) 
o send this information to the server 
 

• The tasks of the skeleton object are: 
o to unmarshal the parameters 
o to call the desired method on the real object lying on the server, 
o to capture the return value or exception of the call on the server, to 

marshal this value, to send a package consisting of the value in the 
marshalled form back to the stub on the client, machine A. 

 
 When a client invokes a server method, the JVM looks at the stub to do type . The request 

is then routed to the skeleton on the server [4], which in turn calls the appropriate method 
on the server object. In other words, the stub acts as a proxy to the skeleton and the 
skeleton is a proxy to the actual remote method.  

 
2.5 Advantages 
 
Java RMI has numerous advantages, as follows: 

• Portable to any JVM. 
• Easy to write/Easy to maintain: Facilitates write remote Java servers and Java clients that 

access those server. 
• Safe and secure: Uses built-in Java security mechanisms to facilitate system safety during 

user download implementations. 
 

 

 

 

 
 



8 
 

 
 
 

 

Chapter 3 
RMI Implementation 

 
 
 

 
 
 



9 
 

3.1 Java RMI: Hello World (in 1 PC) 
 
At first we try to run a “Hello World!” program with java RMI. It is a distributed version using 
Java RMI. The distributed Hello World example make a remote method call to the server, so that 
it could  retrieve the message "HelloWorld!". When the client runs, It receives the "Hello, 
world!" message from the server. For execution of this, we need to fulfill these steps: 
 
Define the functions of the remote class as a Java interface 

 
A remote object is an instance of a class that implements a remote interface. A remote interface 
extends the interface java.rmi.Remote. It declares a set of remote methods. Each remote method 
must declare java.rmi.RemoteException. 

 
 Import java.rmi.Remote; 
Import java.rmi.RemoteException; 
 
public interface Hello extends Remote { 
    String sayHello() throws RemoteException; 
} 

 

Implement the server 
 
Server class has a main method that creates an instance of the remote object implementation, 
exports the remote object, and then binds that instance to a name in a Java rmi registry.  
 
importjava.rmi.Naming;  
importjava.rmi.RemoteException;  
importjava.rmi.server.UnicastRemoteObject; 
importjava.rmi.registry.LocateRegistry; 
importjava.rmi.registry.Registry; 
 
public class HelloImpl extends UnicastRemoteObject implements Hello  
{  
publicHelloImpl() throws RemoteException {} 
 
public String sayHello()  
{  
return "Hello world!";  
} 
public static void main(String args[])  
{  
try 
{  
HelloImplobj = new HelloImpl();   
Registry registry = LocateRegistry.getRegistry(2003); 
registry.bind("HelloServer", obj);  
}  
catch (Exception e)  



10 
 

{  
System.out.println("HelloImpl err: " + e.getMessage());  
e.printStackTrace();  
}  
}  
} 
 
Create and export a remote object 
 
The main method of the server needs to create the remote object that provides the service. When 
we extend java.rmi.server.UnicastRemoteObject, class is automatically exported. This can be 
done as follows: 
 
   Server obj = new Server(); 

Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0); 
 
Instantiate a remote object 
 
The main method of the server creates an instance of the remote object implementation: 
 
   HelloImplobj = new HelloImpl(); 
 
Register the remote object with a Java RMI registry 
 

Registry registry = LocateRegistry.getRegistry(); 
registry.bind("Hello", stub); 

 
Implement the client 
 
The client part of the distributed Hello World example remotely invokes the sayHello method in 
order to get the string "Hello world!", which is output when the client runs. Here is the code for 
the client: 
 
importjava.rmi.RMISecurityManager;  
importjava.rmi.Naming;  
importjava.rmi.RemoteException; 
importjava.rmi.registry.LocateRegistry; 
importjava.rmi.registry.Registry; 
 
public class HelloClient 
{  
public static void main(String arg[])  
{  
String message = "blank"; 
 
System.setProperty("java.security.policy","c:\\hello.policy"); 
System.setSecurityManager(new RMISecurityManager()); 
 



11 
 

try 
{  
 
Registry registry = LocateRegistry.getRegistry( 2003); 
Hello obj = (Hello) registry.lookup("HelloServer"); 
System.out.println(obj.sayHello());  
}  
catch (Exception e)  
{  
System.out.println("HelloClient exception: " + e.getMessage());  
e.printStackTrace();  
}  
}  
} 
 

Compile the Java source files 
 
To compile the Java source files, run the javac command as follows: 
 

Javac Hello.java HelloImpl.java HelloClient.java 
 
Use rmic to generate stubs 
 
In this” Hello World!” example ,to create the stub for the  HelloImpl remote object 
implementation, the command of  run rmic is given below: 
 

                      rmicHelloImpl 
 

 

                        Figure 3.1: rmic of Hello World program  

 

 

 



12 
 

Start the RMI registry   
 
   startrmiregistry 2003 
 

 
                                  Figure 3.2: Starting Registry  
 
Start the server 
 

                               java  HelloImpl 
 

 
 
                        Figure 3.3: Start server of Hello world  
 
 

 
 
 



13 
 

Run the client 
 
                                                         java HelloClient 

 

 
 
                                      Figure 3.4: Running Client of Hello world  
 
 
3.2 Java RMI: Adding 2 Numbers (Between 2 PCs) 
 
In this example, the request specifies two numbers; the server adds these together and returns the 
sum. To create this application, we need to use four files. The first file is AdditionInterface.java. 
It defines the remote interface that is provided by the server.  It contains one method that accepts 
two arguments and returns their sum to the client. 
 
Write and Remote interface that declares remote methods 
 
The first file AdditionalInterface.java defines the remote interface. It includes one method that 
accepts two arguments and returns their sum. 
 
importjava.rmi.Remote; 
importjava.rmi.RemoteException; 
 
public interface AdditionalInterface extends Remote { 
public int Add(int a, int b) throws RemoteException;    
} 
 
 
 
 
 
 



14 
 

 
Implements the remote interface 
 
The second source file which is Addition.java, implements the remote interface. All remote 
objects must extend UnicastRemoteObject, which provides functionality that is needed to make 
objects available from remote machines. 
 
importjava.rmi.RemoteException; 
importjava.rmi.server.UnicastRemoteObject; 
 
public class Addition extends UnicastRemoteObject implements 
AdditionalInterface { 
private static final long serialVersionUID = 1L; 
 
public Addition() throws RemoteException { 
            } 
 
publicint Add(int a, int b) { 
return a + b; 
    } 
} 
 
Implement the Server  
 
The third source file AdditionServer.java contains the main program for the server machine.Its 
fundamental function of this Source file  is to update the RMI registry on that machine. This is 
done by using the rebind( ) method of the Naming class which  found in java.rmi.Naming. 
 
importjava.net.MalformedURLException; 
importjava.rmi.Naming; 
importjava.rmi.RemoteException; 
importjava.rmi.registry.LocateRegistry; 
public class AdditionServer { 
public static void main(String[] argv) throws RemoteException { 
        Addition Hello = new Addition(); 
 
int port = 3001; 
 
try {  
 
LocateRegistry.createRegistry(port); 
System.out.println("java RMI registry created."); 
        } catch (RemoteException e) { 
System.out.println("java RMI registry already exists."); 
        } 
String hostname = "192.168.109.50"; 
 
        String bindLocation = "//" + hostname + ":" + port + "/Hello"; 



15 
 

try { 
Naming.bind(bindLocation, Hello); 
System.out.println("Addition Server is ready at:" + bindLocation); 
        } catch (RemoteException e) { 
e.printStackTrace(); 
        } catch (MalformedURLException e) { 
e.printStackTrace(); 
        } catch (Exception e) { 
System.out.println("Addition Serverfailed: " + e); 
        } 
    } 
} 
 
Develop client Side 
 
The fourth source file, AdditionClient.java, implements the client side of this distributed 
application. AddClient.java requires three command line arguments. The first is the IP address or 
name of the server machine. The second and third arguments are the two numbers that are to be 
summed. Server uses port 3001 to define path. The client program illustrates the remote call by 
using the method Add(9,10) that will be invoked on the remote server machine from the local 
client machine where the client runs. 
 
importjava.net.MalformedURLException; 
import java.rmi.*; 
public class AdditionClient { 
public static void main(String[] args) { 
        String remoteHostName = "192.168.1.2"; 
intremotePort = 3001; 
        String connectLocation = "//" + remoteHostName + ":" + 
remotePort 
                + "/Hello"; 
AdditionalInterface hello = null; 
try { 
System.out.println("Connecting to client at : " + connectLocation); 
hello = (AdditionalInterface) Naming.lookup(connectLocation); 
        } catch (MalformedURLException e1) { 
            e1.printStackTrace(); 
        } catch (RemoteException e1) {       
e1.printStackTrace(); 
        } catch (NotBoundException e1) { 
e1.printStackTrace(); 
        } 
int result = 0; 
try { 
result = hello.Add(9, 10); 
        } catch (RemoteException e1) { 
            e1.printStackTrace();} 
System.out.println("Result is :" + result); 
    } 
} 



16 
 

Compile the Java source files 
 
To compile the Java source files, run the javac command as follows: 
 

Javac Hello.java HelloImpl.java HelloClient.java 
 

 
 
                            Figure 3.5: Creating class and stub file of two numbers addition 
 
 
 
Generate stub 
 
Compile all Java source files and keep all generated .class files in the same directory. We must 
generate the necessary stub. Before use the client and the server.  Remote method calls initiated 
by the client are actually directed to the stub. The stub works with the other parts of the RMI 
system to formulate a request that is sent to the remote machine.To generate stubs, we use a tool 
called the RMI compiler, which is invoked from the command line, as shown here: 
 
                                   rmic Addition 
 
When using rmic, ensure that class path is set-to include the current directory. By default, rmic 
generates both  stub and skeleton file. 
  
Start the RMI Registry on the Server 
 
We have to go to the directory on the server machine where we  keep  source files and then 
check that the class path environment variable includes the directory in which files are located . 
 
 
 
 
 
 



17 
 

Start the RMI Registry from the command line 
 
                                                             startrmiregistry 3001 
 

 
 
                                Figure 3.6: Start the rmiregistry  
 
When this command returns, We see a new window has been created. 
 
Start the Server 
 
The server code is started from the command line, as shown here: 
                           

 java AdditionServer 
 

 
 
                               Figure 3.7: Starting server of two number addition  



18 
 

Start the Client 
 
The AdditionClient software requires three arguments: the name or IP address of the server 
machine and the two numbers that are to be summed together. The client code is started from the 
command line, as shown here: 

 
                                                                     java Addition client 
 

 
 
                   Figure 3.8: Output of two numbers addition  

 
 
3.3 Java RMI: String Passing (Between 2 PCs) 
 
In this example, we try to pass a string with java RMI. It is a distributed version  using Java 
RMI. The distributed Hello Client example makes a remote method call to the server, so that it 
could retrieve the message "Hello". When the client runs, The server pass a massage and the 
receives the "Hello" message from the server. 
 
Write a Remote interface that declares remote methods 
 
The first file AdditionalInterface.java defines the remote interface. It includes one method that 
accepts string argument and returns their massage. 
 
importjava.rmi.Remote; 
importjava.rmi.RemoteException; 
 
public interface AdditionalInterface extends Remote { 
public String Add(String str) throws RemoteException;    
} 
 



19 
 

 

Implements the remote interface 
 
The Addition.java files which implements the remote interface. All remote objects must extend 
UnicastRemoteObject, which provides functionality that is needed to make objects available 
from remote machines. When we extend java.rmi.server. UnicastRemoteObject, class is 
automatically exported. This can be done as follows: 
 
importjava.rmi.RemoteException; 
importjava.rmi.server.UnicastRemoteObject; 
 
public class Addition extends UnicastRemoteObject implements 
AdditionalInterface { 
private static final long serialVersionUID = 1L; 
 
public Addition() throws RemoteException {    
    } 
public String Add(String str) { 
return "Hello Client"; 
    } 
} 
 
Implement the server 
 
Since RMI is network based, it is essential to use networking terminology .As we know, 
Networking is based on the notion of hosts, servers, and clients. Server class has a main method 
that creates an instance of  the remote object implementation, exports the remote object, and then 
binds that instance to a name in a Java RMI registry. We can treat each computer as a host. Hosts 
have names and  we use network address as name= "103.230.5.14". the host which provide  
services are called servers. Clients are machines which use these services. This is done by having 
a registry service. With a registry service, servers can register services and clients can lookup 
services and find the corresponding servers. 
 
importjava.net.MalformedURLException; 
importjava.rmi.Naming; 
importjava.rmi.RemoteException; 
importjava.rmi.registry.LocateRegistry; 
 
public class AdditionServer { 
public static void main(String[] argv) throws RemoteException { 
        Addition Hello = new Addition(); 
int port = 3001; 
try {  
LocateRegistry.createRegistry(port); 
System.out.println("java RMI registry created."); 
        } catch (RemoteException e) { 
System.out.println("java RMI registry already exists."); 
        } 



20 
 

        String hostname = "192.168.109.50"; 
        String bindLocation = "//" + hostname + ":" + port + "/Hello"; 
try { 
Naming.bind(bindLocation, Hello); 
System.out.println("Addition Server is ready at:" + bindLocation); 
        } catch (RemoteException e) { 
e.printStackTrace(); 
        } catch (MalformedURLException e) { 
e.printStackTrace(); 
        } catch (Exception e) { 
System.out.println("Addition Serverfailed: " + e); 
        } 
    } 
} 
 
Implement the client 
 
The fourth source file, AdditionClient.java, implements the client side of this distributed 
application. AdditionClient.java requires three command line arguments. The first is the IP 
address or name of the server machine. The second arguments is  the two string that are to be 
passed. Server uses port 3001 to communicate with Client desktop. 
 
importjava.net.MalformedURLException; 
importjava.rmi.*; 
public class AdditionClient { 
public static void main(String[] args) { 
        String remoteHostName = "192.168.109.50"; 
intremotePort = 3001; 
        String connectLocation = "//" + remoteHostName + ":" + 
remotePort 
                + "/Hello"; 
AdditionalInterface hello = null; 
try { 
System.out.println("Connecting to client at : " + connectLocation); 
hello = (AdditionalInterface) Naming.lookup(connectLocation); 
        } catch (MalformedURLException e1) { 
e1.printStackTrace(); 
        } catch (RemoteException e1) { 
e1.printStackTrace(); 
        } catch (NotBoundException e1) { 
e1.printStackTrace(); 
        } 
 
String result="0"; 
try { 
result = hello.Add("Hello"); 
        } catch (RemoteException e1) { 



21 
 

e1.printStackTrace(); 
        } 
System.out.println("Result is :" + result); 
    } 
} 

 
Generate stub 
 
In this step , we have to compile all Java source files and keep all generated .class files in the 
same directory and   generate the necessary stub before  use the client and the server. The 
function of stub is to present the same interfaces as the remote server. Remote method calls 
initiated by the client are actually directed to the stub.  
 
We have to set  class path  include the current directory before using rmic.To generate stubs ,we 
use a tool called the RMI compiler , which isinvoked from the command line, as shown here: 
                                                  

 rmic Addition 
 

 
 
                              Figure 3.9: Creating Stub file of String pass program  
 
Start the RMI Registry on the Server 
 
We have to go to the directory on the server machine where we  keep  source files and then 
check that the class path environment variable includes the directory in which files are located . 
 Then, Start the RMI Registry from the command line: 
 
                                                    startrmiregistry 3001 



22 
 

 

 
 
                         Figure3.10: Start the registry 3001 
 
Start the Server 
 
The server code is started from the command line, as shown here: 
 
                                                      javaAdditionServer. 
  

 
 
                                             Figure 3.11: Starting the server  
 



23 
 

Start the Client 
 
The AdditionClient software requires two arguments: the name or IP address of the  server 
machine and the String .command is given below:                                    

  
                javac  AdditionClient  java AdditionClient 
 

 
 
                        Figure 3.12: Create class file and run the client  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



24 
 

 
 
 
 
 
 
 
 

 
 
 

Chapter 4 
RMI with Database 
 
 

 
 

 

 

 

 

 

 
 
 
 



25 
 

Java RMI provides a simpler mechanism to invoke method remote. Here we will discuss the 
development of Java RMI with database application. This sample application is layered into 
3tier: client, RMI server or middleware, and database. 
 
4.1 Setting Local host connection with Database 
 
We create an connection  file called demo.java. As we are using the SQL package, we also need 
to declare java.sql.SQLException in the throws. We use user name= root and password =””. We 
use local host port 3306. 
 
import java.sql.Connection; 
import java.sql.DriverManager; 
import java.sql.SQLException; 
public class demo{ 
 public static void main(String[] args) { 
  try{ 
  Class.forName("com.mysql.jdbc.Driver"); 
   Connection 
con=DriverManager.getConnection("jdbc:mysql://localhost:3306/rmi","roo
t",""); 
  if(con!=null) 
   System.out.println("connection successful"); 
 }catch(ClassNotFoundException | SQLException e){ 
  System.err.println(e); 
 } 
 } 
} 
 
4.2 Define the Remote Interfaces 
 
In this project, we are trying to run SQL queries using distributed Java objects. To manipulate a 
remote server object, client code needs to know what it can do with that object. Therefore, an 
interface is shared between the client and server. It is this interface that exposes the methods of 
the remote object to the client. 
 
Create the Remote Interface 
 
Our interface file is called AdditionalInterface.java. In order to create a remote interface. We 
import the RMI package .we use SQL and also import the SQL package. To expose the remote 
methods to a client, the interface must extend java.rmi.Remote. Each exposed method must 
declare java.rmi.RemoteException  in its throws.  
 
 



26 
 

 
Define the remote methods in an interface (AdditionalInterface.java) 
 
import java.rmi.Remote; 
import java.rmi.RemoteException; 
 
public interface AdditionalInterface extends Remote{  
 

Compile and Locate the Interface 
 
We compile the interface file using the javac command: 
 
                  javac AdditionalInterface.java 
 
This produces a file called AdditionalInterface.class 
 

 
                 
                        Figure 4.1: Create class file of Addition and AdditionServer 
 

4.3 Define the Remote Classes 
 
In this step, we create the remote server class. The remote server class implements all of the 
methods defined by the interface we created above stop  by creating the actual Java methods to 
match the interface. 
 
 
 
 



27 
 

Create the Remote Server Class 
 
Here we import the  java.rmi.server package into the class. In this step ,we define the remote 
server by creating a  class called Addition.class in  Addition.java file. In order to define the class 
as containing methods that can be accessed remotely, we define Addition as a subclass of  
UnicastRemoteObject, implementing the   Additionalinterface. 
 
Remote server class Addition.java 
 
import java.rmi.RemoteException; 
import java.rmi.server.UnicastRemoteObject; 
 
public class Addition extends UnicastRemoteObject implements 
        AdditionalInterface { 
   private static final long serialVersionUID = 1L; 
 
    public  Addition() throws RemoteException { 
    } 
    

Compile and Locate the Remote Server Class 
 
Compile the remote server class using javac: 
 
                                 javac Addition.java 

   
This produces a file called Addition.class. 
 
With RMI, client program and remote objects use proxy called stub to handle the necessary 
networking between them. As Stub is a Java class. We place the compiled stub on the client .The 
RMI server host may cooperate as a client for another RMI server. 
 
 
Generate the Stub Class 
 
With RMI, client program and remote objects use proxy called stub to handle the necessary 
networking between them. As Stub is a Java class. We place the compiled stub on the client .The 
RMI server host may cooperate as a client for another RMI server. 
 
In RMI, a stub is a java class that either resides on the client machine. We create stubs by using 
rmic (RMI compiler), which ships with the JDK. Before generating stub we compile the remote 
interface, AdditionalInterface.java, and the remote server, Addition.java. To generate stubs, we 
use a tool called the RMI compiler, which is invoked from the command line, as shown here: 
 
Creatin                                      g rmic Addition 
 
This creates class files 



28 
 

                                          Addition_Stub.class 
 

 
   
   Figure 4.2: rmic Addition 
 
4.4 Creating the Server 
 
Server programs register remote objects with the bootstrap registry service. Once the remote 
object is registered, server programs can return references to the object. Since RMI is network 
based, it is essential to use networking terminology .As we know, Networking is based on the 
notion of hosts, servers, and clients. We can treat each computer as a host. Hosts have names and  
we use network address as name= "192.168.109.50". The class that contains the remote methods 
is instantiated in the following line: 
 
          Addition Hello = new Addition(); 
The object is then registered with the RMI registry service: 
 
              Naming.bind(bindLocation, Hello); 
 
This is all we need to do to set up the remote factory to instantiate remote objects; RMI does 
everything else. 
 
Start the RMI Registry Service on the Server 
 
 
To access a remote object, a client program first gets a reference to the object by using the 
Naming class to look up the object using its registered name. Set your environment to point to 
the location of your Java installation.The Windows equivalent would be C:\ProgramFiles\Java\ 
jdk1.8.0_71 before starting registry, we should set class path. 



29 
 

 
Start the registry 
 
                                      start rmiregistry 3001 

 
 
                 Figure 4.3: start rmiregistry 
Start the Server  
 
After setting class path and start the registry which creates an object that implements the 
methods accessed remotely by the client. We can start the server program as follows: 
 
                      java AdditionServer 
 

 
 
    Figure 4.4: Execution of the server 
 
 



30 
 

4.5 Create the Java Client Program 
 
Client programs use remote objects that have been exported by remote server programs. In order 
to do this, the client program must look up the remote object in the remote RMI registry. When 
the remote object is located, the stub of the remote object is sent to the client. The client invokes 
the methods in this stub as if the stub were the actual remote object in the local Java Virtual 
Machine. 
 
Obtaining a Reference to the Remote Object 
 
The client uses the Naming.lookup method to obtain a reference to the remote object. The 
returned value is actually a reference to a stub object. 
 
hello=(AdditionalInterface) Naming.lookup(connectLocation); 
 
 
Output of the project 
 
 

 
      
                                          Figure 4.5: Database of Students 
 
 



31 
 

 
 
                              Figure 4.6: Execution of client  
 
 
 
 

 
 
                          Figure 4.7: Option choice window 
 



32 
 

 
 
                       Figure 4.8: Add new record into database 
 
 
 
 

 
                                         
                                        Figure 4.9: Inserted database  
 
 



33 
 

 

                      Figure 4.10: Command of delete a record from database  
 
 
 
 

 
 
                                     Figure 4.11:  deleted Database  



34 
 

 
 
                                       Figure 4.12: Choosing retrieve option 
 
 
 
 

 
 
               Figure 4.13: Command of retrieve a record from database  
 
 
 



35 
 

 
 
                   Figure 4.14: Retrieved result 

 

 

 

 

                            Figure 4.15: Choosing Update option 



36 
 

 

                   Figure 4.16: Command of update a record into database  
 

 

 

                           Figure 4.17: Updated databases 

 

 



37 
 

 

 

 

 
 
 
 

Chapter 5 
Conclusion and 
Future Work 

 
 
 
 
 

 



38 
 

5.1 Conclusion 
 
Java RMI has been introduced to reduce the complexity in developing protocol that relies on 
UDP and TCP.  RMI allow programmers to develop distributed Java programs with the same 
syntax and semantic used for non-distributed program. RMI provides a simpler mechanism to 
invoke method remotely. Here we discussed the development of Java RMI with database 
application.  RMI gives platform to expand Java into any part system in an incremental fashion, 
adding new Java servers and clients when it makes sense. After addition of Java, its full benefits 
flow through all the Java in system. RMI makes this easy, secure, and powerful. 
  
5.2 Future Work 
 
The future plan of this project is to improved design, implementation and documentation in such 
a way that anyone can use this project for better. Future work may include developing the 
application dynamically so that Client can access this application from anywhere. RMI based 
distributed query processing system will be enhanced with a web application. We will make a 
distributed web application which can run from any device. In future we will be add a web 
application on server and the user access this application through different type of devices like 
computer, mobile phone.  



39 
 

Appendix 
 
Code for RMI Implementation with Database  
  
AdditionalInterface.java 
 
import java.rmi.Remote; 
import java.rmi.RemoteException; 
 
public interface AdditionalInterface extends Remote { 
    public String[] Add(String str) throws RemoteException;  
public String[] Add1(String str) throws RemoteException;  
public String[] Add2(String str) throws RemoteException; 
public String[] Add3(String str) throws RemoteException; 
} 
 
 
 
 
Addition.java 
 
import java.rmi.RemoteException; 
import java.rmi.server.UnicastRemoteObject; 
import java.rmi.server.*; 
import java.sql.*; 
import java.rmi.Remote; 
import java.rmi.*;  
import java.sql.Connection; 
import java.sql.DriverManager; 
import java.sql.SQLException; 
 
public class Addition extends UnicastRemoteObject implements 
        AdditionalInterface { 
   private static final long serialVersionUID = 1L; 
 
 
    public  Addition() throws RemoteException { 
    } 
    public String[] Add(String str) { 
        System.out.println(str); 
         ResultSet rs; 
        Integer tot_rows = 0 ; 
 String str1[]= new String[6]; 
try  
        { 
            java.sql.Connection rmiconn=null; 
            Class.forName("com.mysql.jdbc.Driver"); 
            rmiconn = 
DriverManager.getConnection("jdbc:mysql://localhost:3306/rmi","root","
"); 



40 
 

               if(rmiconn!=null) 
    System.out.println("connection successful"); 
            Statement st=rmiconn.createStatement(); 
            st.executeUpdate(str);     
           st.execute("commit"); 
        }  
        catch (Exception e)  
        { 
          System.out.println("Not executed"); 
            System.out.println(e); 
            } 
return(str1); 
} 
    public String[] Add1(String str) { 
        System.out.println(str); 
         ResultSet rs; 
        Integer tot_rows = 0 ; 
             String str1[]= new String[6]; 
                      try  
            { 
                java.sql.Connection rmiconn=null; 
                Class.forName("com.mysql.jdbc.Driver"); 
                rmiconn = 
DriverManager.getConnection("jdbc:mysql://localhost:3306/rmi","root","
"); 
               if(rmiconn!=null) 
   System.out.println("connection successful"); 
                Statement st=rmiconn.createStatement(); 
                st.executeUpdate(str);  
            }  
            catch (Exception e)  
            { 
                System.out.println(e); 
            } 
     return(str1); 
    }  
public String[] Add2(String str) { 
 
        System.out.println(str); 
         ResultSet rs; 
        Integer tot_rows = 0 ; 
String str1[]= new String[6]; 
        try  
        { 
            java.sql.Connection rmiconn=null; 
            Class.forName("com.mysql.jdbc.Driver"); 
            rmiconn = 
DriverManager.getConnection("jdbc:mysql://localhost:3306/rmi","root","
"); 
              if(rmiconn!=null) 
   System.out.println("connection successful"); 
            Statement st=rmiconn.createStatement(); 



41 
 

            rs=st.executeQuery(str); 
            if(rs.next()) 
            { 
                    str1[0]=Integer.toString(rs.getInt("rollno")); 
                    str1[1]=rs.getString("name"); 
                    str1[2]=Integer.toString(rs.getInt("sub1")); 
                    str1[3]=Integer.toString(rs.getInt("sub2")); 
                    str1[4]=Integer.toString(rs.getInt("sub3"));          
            } 
            else 
            { 
                str1 = null; 
            } 
                 
        }  
        catch (Exception e)  
        { 
            System.out.println(e); 
        } 
        return(str1); 
    } 
   public String[] Add3(String str) { 
 
        System.out.println(str); 
         ResultSet rs; 
        Integer tot_rows = 0 ; 
 String str1[]= new String[6];   
            try  
            { 
                java.sql.Connection rmiconn=null; 
                Class.forName("com.mysql.jdbc.Driver"); 
                rmiconn = 
DriverManager.getConnection("jdbc:mysql://localhost:3306/rmi","root","
"); 
            if(rmiconn!=null) 
    System.out.println("connection successful"); 
                Statement st=rmiconn.createStatement(); 
                st.executeUpdate(str); 
               
            }  
            catch (Exception e)  
            { 
                System.out.println(e); 
            } 
       return(str1); 
} 
} 
 
 
 
 



42 
 

AdditionServer.java 
 
import java.net.MalformedURLException; 
import java.rmi.Naming; 
import java.rmi.RemoteException; 
import java.rmi.registry.LocateRegistry; 
 
public class AdditionServer { 
    public static void main(String[] argv) throws RemoteException { 
        Addition Hello = new Addition(); 
        int port = 3001; 
        try {  
            LocateRegistry.createRegistry(port); 
            System.out.println("java RMI registry created."); 
        } catch (RemoteException e) { 
            System.out.println("java RMI registry already exists."); 
        } 
        String hostname = "192.168.109.50"; 
        String bindLocation = "//" + hostname + ":" + port + "/Hello"; 
        try { 
            Naming.bind(bindLocation, Hello); 
            System.out.println("Addition Server is ready at:" + 
bindLocation); 
        } catch (RemoteException e) { 
            e.printStackTrace(); 
        } catch (MalformedURLException e) { 
            e.printStackTrace(); 
        } catch (Exception e) { 
            System.out.println("Addition Serverfailed: " + e); 
        } 
    } 
} 
 

AdditionClient.java  
 
import java.net.MalformedURLException; 
import java.rmi.*; 
import java.io.*; 
import java.util.*; 
import static java.lang.System.exit; 
import java.util.Arrays; 
import java.util.Scanner; 
public class AdditionClient {  
    public static void main(String[] args) { 
     Scanner scanner = new Scanner(System.in); 
        String remoteHostName = "192.168.109.50"; 
        int remotePort = 3001; 
        String connectLocation = "//" + remoteHostName + ":" + 
remotePort 
                + "/Hello"; 
        AdditionalInterface hello = null; 



43 
 

        try { 
            System.out.println("Connecting to client at : " + 
connectLocation); 
            hello=(AdditionalInterface) 
Naming.lookup(connectLocation); 
        } catch (MalformedURLException e1) { 
            e1.printStackTrace(); 
        } catch (RemoteException e1) { 
            // TODO Auto-generated catch block 
            e1.printStackTrace(); 
        } catch (NotBoundException e1) { 
            e1.printStackTrace(); 
        } 
int  x,y; 
int ch; 
String choice="y"; 
        String[] result=new String[10]; 
        Scanner sc=new Scanner(System.in); 
    try { 
   do 
         {  
 
                System.out.println("1. Insert"); 
  System.out.println("2. Delete"); 
                System.out.println("3. Retrieve"); 
                System.out.println("4. Update"); 
                System.out.println("Enter Your Choice"); 
                ch=sc.nextInt(); 
       switch(ch) 
                { 
                    case 1:   
                    System.out.println("Input Roll Num:"); 
                    int rollno = scanner.nextInt(); 
                    System.out.println("Input Name:"); 
                    String name = scanner.next(); 
                    System.out.println("Input Subject1 Mark:"); 
                    int sub1 = scanner.nextInt(); 
                    System.out.println("Input Subject2 Mark:"); 
                    int sub2 = scanner.nextInt(); 
                    System.out.println("Input Subject3 Mark:"); 
                    int sub3 = scanner.nextInt();  
                    result= hello.Add("INSERT INTO student VALUES 
("+rollno+",'"+name+"',"+sub1+","+sub2+","+sub3+")"); 
  System.out.println("Insert into database"); 
                      break; 
                     case 2:       
                         System.out.println("Delete Roll Num:"); 
                         int roll = scanner.nextInt(); 
  result = hello.Add1("DELETE from student WHERE 
rollno="+roll+""); 
   System.out.println("Dalete Row"); 
    break; 



44 
 

   case 3: 
                         System.out.println("View all Roll Num:"); 
                                       int rol = scanner.nextInt(); 
               result = hello.Add2("SELECT * FROM student Where rollno 
="+rol+""); 
                      for (String v: result) 
                            System.out.println("Result is : " + v); 
                         break; 
                        case 4: 
                       System.out.println("Update Roll Num:"); 
                                        int ro = scanner.nextInt(); 
                       System.out.println("Update name:"); 
                                       String name1 = scanner.next(); 
                       System.out.println("Update Sub1 mark:"); 
                                       int su1 = scanner.nextInt(); 
                       System.out.println("Update Sub2 mark:"); 
                                       int su2 = scanner.nextInt(); 
                       System.out.println("Update Sub3 mark:"); 
                                       int su3 = scanner.nextInt(); 
    result = hello.Add3("UPDATE student SET 
name='"+name1+"',sub1="+su1+",sub2="+su2+",sub3="+su3+" WHERE 
rollno="+ro+" "); 
                   System.out.println("Update Database"); 
    break; 
               default : 
   System.out.println("wrong choice"); 
   break; 
 
                 } 
               System.out.println("continue y\\n"); 
        choice=sc.next(); 
 
           }while(choice.equals("y")); 
       
 
        } catch (RemoteException e1) { 
            e1.printStackTrace(); 
        } 
 
} 
} 
 
 
 
 
 
 
 
 
 



45 
 

References 
 
[1]  Distributed Systems: Concepts and Design (5th Edition) by George Coulouris , Jean          

Dollimore , Tim Kindberg 
[2]  https://www.techopedia.com/definition/1311/remote-method-invocation-rmi.html  

[3]  http://www.javacoffeebreak.com/articles/javarmi/javarmi.html   

[4]  http://mrbool.com/how-to-create-rmi-client-and-server-to-invoke-remove-method-of-rmi-       
server-in-java/28320  

[5]  https://www.cs.ucsb.edu/~cappello/lectures/rmi/helloworld.shtml   

[6]  http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/hello/hello-world.html   

[7]  http://javaexamples-shanavas.blogspot.com/2009/02/rmi-remote-methode-invocation- 
two.html  

[8]  https://cseweb.ucsd.edu/classes/wi00/cse130/rmi.html  
 
[9]  http://lycog.com/distributed-systems/java-rmi-database-application/1.html  
  
[10]  http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html  
 
[11] http://www.cs.ucsb.edu/~cappello/lectures/rmi/helloworld.shtml  
 
[12] http://stackoverflow.com/questions/21495389/example-of-a-rmi-program-involving-2-

machine-connected-via-lan  


