
Verification of Web Service Composition Using 
“SPIN” 

 
 
 

 
 
 
 

Submitted by 
 

Mohammad Mohibul Hasan 

      Abdur Razzaq Akhunji 

 

 

Supervised by 

 

Dr. Shamim Hasnat Ripon 
Chairperson and Associate Professor  

Department of Computer Science and Engineering 

 

 

 

A project submitted in partial fulfillment for the degree of 
Bachelor of Science in Computer Science and Engineering 

 

In the 

 

Faculty of Science and Engineering 

Department of Computer Science and Engineering 
 
 
 

 

 

 

September 2015 



 

Verification of Web Service Composition 
Using “SPIN” 

 
 
 

 

Supervised by 

 

Dr. Shamim Hasnat Ripon 
Chairperson and Associate Professor  

Department of Computer Science and Engineering 
 
 
 
 

Submitted by 
 

Mohammad Mohibul Hasan 
2011-1-60-007 

      Abdur Razzaq Akhunji 

2011-1-60-013 

 

A project submitted in partial fulfillment for the degree of 
Bachelor of Science in Computer Science and Engineering 

 

In the 

 

Faculty of Science and Engineering 

Department of Computer Science and Engineering 
 
 
 
 
 
 
 
 
 
 

    East West University 
      September 2015 



 

Declaration by Candidates 
 
 
 
 
 
 
 
We hereby declare that, the work presented in this project is to the best of our knowledge 

and belief, original, except as acknowledged in the text and that the material has not been 

submitted, either in whole or in part, for a degree at this or any other university. 

 
 
 

 

 

 

 

 
_______________________________________ 
    Mohammad Mohibul Hasan 
              (2011-1-60-007) 
 
 
 

 

 
 
_____________________________________ 

     Abdur Razzaq Akhunji 

            (2011-1-60-013) 
 
 



 

 

Letter of Acceptance 
 
 
 
 
 

The project entitled “Web Service Composition Verification Using SPIN” submitted 

by Mohammad Mohibul Hasan (ID: 2011-1-60-007) and Abdur Razzaq Akhunji (2011-1-60-

013), to the department of Computer Science and Engineering, East West University, Dhaka, 

Bangladesh is accepted by the department in partial fulfillment of requirements for the 

Award of the Degree of Bachelor of Science in Computer Science and Engineering on 

September 2015  
 
 
 
 
 
 

 

 
 

 
 
 
 
 ______________________________                                            
Dr. Shamim Hasnat Ripon                     
SUPERVISOR and CHAIRPERSON 
Department of Computer Science and 
Engineering   
East West University, 
Dhaka-1212, Bangladesh   

  

 
 
 
 



 

Abstract 

 

 

Web service composition and its verification is an important part to get an error free web 

service. In a web service there are huge business transaction occurs.  Sometimes in business 

transaction, it needs to deal with faults that can arise in any stage of transaction. So always 

roll back mechanism is not possible to solve this problem. In order to achieve a common 

business goal, the protocol of interaction must be correct. In this project we have established 

a Broker system and encode this overall model into PROMELA (Model checking Language). 

For verify this model we also have used linear temporal logic and convert it to never claim 

property to verify this model accuracy. If any oversight happened then a compensation 

mechanism has been used to handle the situation.  

 

 

 

 

 

 

 

 

 

 



 

Acknowledgement 

 

 

Firstly, we would like to thank Almighty Allah for give us mental and psychical strength to 

complete this project. We are cordially grateful to our honorable supervisor Dr. Shamim H. 

Ripon, Chairperson and Associate Professor of Department of Computer Science and 

Engineering, East West University, Dhaka Bangladesh for providing us this opportunity to 

test our skills in the best possible manner. He enlightened, encouraged and provided us with 

ingenuity to transform our vision into reality. Without his help, it will not be possible to 

complete our project work in due time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 

 

TABLE OF CONTENTS 

 
 

CHAPTER I 
 
 INTRODUCTION  ................................................................................................ 1-3 
 

1.1 Introduction  .................................................................................................................................... 1 

1.2 Motivation ......................................................................................................................................... 2 

1.3 Objective ............................................................................................................................................ 2 

1.4 Contribution .............................................................................................................................. 3 

1.5 Outline .......................................................................................................................................... 3 

 
 

CHAPTER II 
 

 BACKGROUND ............................................................................................. 4-15 
 
2.1 Spin ................................................................................................................................................ 4 

2.2 PROMELA .................................................................................................................................... 5 

       2.2.1 mtype Declaration ........................................................................................................ 5 

       2.2.2 Channel Declaration .................................................................................................... 6 

       2.2.3 Message Passing ............................................................................................................ 6 

       2.2.4 Control Flow Constructs ............................................................................................ 7 

                  2.2.4.1 Selection ............................................................................................................ 8 

                  2.2.4.2 Repetition ......................................................................................................... 8 

                  2.2.4.3 Unconditional Jump ...................................................................................... 9 

       2.2.5 Active Proctype.............................................................................................................. 9 

       2.2.6 Init ................................................................................................................................... 10 



ii 

 

       2.2.7 Atomic ............................................................................................................................ 10 

       2.2.8 Assertion ....................................................................................................................... 11 

2.3 ltl (linear temporal logic) ........................................................................................... 11-13 

2.4 Web Service Composition.................................................................................................. 13 

        2.4.1 Choreography ............................................................................................................. 14 

        2.4.2 Orchestration ............................................................................................................. 15 

 
 

CHAPTER III 

 
 WEB SERVICE COMPOSITION AND COMPENSATION ..................... 16-23 

 
3.1 Web Service Composition.................................................................................................. 16 

3.2 Buyer ......................................................................................................................................... 17 

3.3 Broker ....................................................................................................................................... 18 

3.4 Supplier .................................................................................................................................... 19 

3.5 Loan Center ...................................................................................................................... 19-20 

3.6 Compensation ........................................................................................................................ 22 

3.7 Compensation Mechanism of Web Service .......................................................... 22-23 

 

 

CHAPTER IV 
 

SERVICE CHOREOGRAPHY IN PROMELA ........................................... 24-32 

 

 4.1 Encoding Process ................................................................................................................. 24 

 4.2 Declaration of mtype ................................................................................................... 24-25 

 4.3 Channel Declaration  ................................................................................................... 25-26 

 4.4 Boolean Type Representation ................................................................................. 26-27 

 4.5 Process Creation ........................................................................................................... 27-28 



iii 

 

 4.6 General Model Representation in PROMELA ............................................................ 28 

         4.6.1 First Phase .................................................................................................................. 29 

         46.2 Second Phase ....................................................................................................... 29-30 

         4.6.3 Third Phase ......................................................................................................... 30-31 

         4.6.4 Fourth Phase....................................................................................................... 31-32 

         4.6.5 Abort Phase ................................................................................................................ 32 

 
 

CHAPTER V 

 
WEB SERVICE COMPOSITION SIMULATION ..................................... 33-41 
 

 

5.1 Web Service Composition Simulation Results ................................................... 33-34 

5.2 Automata View ............................................................................................................... 34-35 

        5.2.1 Buyer Process ............................................................................................................ 35 

        5.2.2 Broker Process .......................................................................................................... 35 

                  5.2.3 Supplier Process ........................................................................................................ 38 

        5.2.4 Loan Center Process  ............................................................................................... 38 

        5.2.5 Abort Process  ............................................................................................................ 38 

       5.3 Verification  .............................................................................................................................. 40 

       5.3.1 LTL Verification .......................................................................................................... 40 

                        5.3.1.1 Safety  ......................................................................................................... 40-41 

                        5.3.1.2 Liveness  .......................................................................................................... 41 

 

CHAPTER VI 

 

CONCLUSION  .................................................................................................... 42 

 
6.1 Summary   ................................................................................................................................ 42 

6.2 Future Work  .......................................................................................................................... 42 



iv 

 

LIST OF FIGURES 
 
 
 
Figure 2.1: Web Services Choreography   ........................................................................... 14 

       Figure 2.2: Web Services Orchestration  ............................................................................. 15 

Figure 3.1: Buyer Process   ....................................................................................................... 17 

Figure 3.2: Broker Process  ...................................................................................................... 18 

Figure 3.3: Supplier Process   .................................................................................................. 19 

Figure 3.4: Loan Center   ........................................................................................................... 20 

Figure 3.5: Overall diagram of BUYER BROKER System   ............................................ 20 

Figure 3.6: Buyer-Broker Message Sequence Chart   ..................................................... 21 

Figure 3.7: Message Sequence chart for Abort process   .............................................. 23 

Figure 5.1: Simulation symbol of Buyer-Broker Web Services   ................................ 34 

Figure5.2: Automata View of Abort process ..................................................................... 36 

Figure 5.3: Automata view of BUYER-BROKER web services .................................... 37 

Figure 5.4: Automata view of SUPPLIER, LOAN Center web service ....................... 38 

  



v 

 

Table 
 
Figure 5.4: Automata view of Supplier, Loan Center Web Service ........................... 12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Appendix 
 
 

A.1 PROMELA ENCODING .......................................................................................................... 43-49 

A.2 LTL Verification   .......................................................................................................................... 49 

        A.2.1 LTL Codes ..................................................................................................................... 49-50 

             A.2.1.1 Liveness   ............................................................................................................. 50 

                    A.2.1.2 Safety   .................................................................................................................. 50 

 

 
 
 
 



 

1 | P a g e  
 

Chapter I 

 

Introduction 

 

1.1 Introduction 

 

Web service plays an important role in business management in these days. Many business 

companies run their company by using web service. It makes the life easier for the business 

people also the others. It is important to check the performance of a web service system 

when it starts. Performance means, whether every process inside the service is working 

properly or there are any transactions in that web services has fault, all these issues become 

important to maintain a good web service. When multiple partners involve in a web service 

then it became composite web service or we can say web service composition. Web service 

composition's verification is an important part to get a good web service. In a web service 

there are business transaction occurs.  Sometimes in business transaction, it needs to deal 

with faults that can arise in any stage of transaction. In usual database transaction, a rollback 

mechanism is used to handle faults in order to provide atomicity to a transaction. It takes lot 

of times to fulfill the transaction if this kind of problem happens; it calls Long Run 

Transaction (LRT). Sometimes it is not possible to roll back the total transaction. It is both 

difficult and critical while multiple partners are involved in their interactive nature. LRT also 

not able to handle in which point the fault has occurred. I.e. sent message cannot be unsent 

in this case separate mechanism can be used to handle this. Possible solution of this problem 

may be that system designer can provide a mechanism to compensate the action that cannot 

be undone automatically [1]. SPIN is a powerful model checker that verifies the correctness 

of distributed communication models. This project report represents a SPIN based formal 

verification approach of a web service composition.  



 

2 | P a g e  
 

1.2 Motivation 

 

In web service composition existing techniques for creating business procedure are not good 

enough to handle errors while each service transfer data in between cross organizational 

opponents. Since all this methods are not flexible enough to handle the technical 

transections’ errors that web services introduce. For solving this problem compensation 

mechanism has a good impact on web service composition. In our project we have used this 

mechanism on our web service composition and then we have tried to verify the overall 

model.  

 

 

1.3 Objective 

 

Web service composition verification we have some basic objectives have to show which 

are  

 

 Verification of web service choreography. 

 Compensation mechanism of our service. 

 Verification of the model by checking Linear Temporal Logic (LTL) property 

 

 

 

 

 

 



 

3 | P a g e  
 

1.4 Contribution 

 
Our contribution of this project are given below: 

 

 First we set a model. We have choose a Buyer-Broker system as our model (web 

service) and try to represent it in PROMELA language by using SPIN tool. 

 After that, we have tried to check whether this model perform correctly or not. 

 Further added, we have used Linear Temporal logic (LTL) so that we can verify our 

implementation. 

 What will happen if the model works perfectly or there will be any error? As this 

situation we have tried to implement compensation mechanism for solving this 

problematic situation.  

 

 

1.5 Outline 

 

 Basically chapter I is an introductory part. 

 In chapter II there is a brief explanation of “SPIN” tool which specify how to work with 

SPIN. There are also have some description about PROMELA. After that, we discussed 

a general description of linear temporal logic property and web service composition. 

 In chapter II there is an overview of Broker System in service composition model that 

how it works with message sequence chart. 

 In chapter IV we have encoded our web service (Broker System) into PROMELA. 

  In chapter V simulation and verification of the broker system shows its correctness 

using LTL property. 

 In chapter VI conclude it with sort summary and future work.    

 

 



 

4 | P a g e  
 

Chapter II 

 
Background 

 

2.1 SPIN 

 

SPIN is a temporal logic checker works on automata based property.  SPIN stands for Simple 

PROMELA Interpreter. It is a tool for analyzing the model system specified in PROMELA. 

Therefore, it uses PROMELA as a modeling language. SPIN can use the entire check of high-

level models of concurrent system. It also executes parallel processes. It is designed, to 

describe systems of asynchronous communication. SPIN is design for various distributed 

system like data communication protocol, multithread code, client server protocol, network 

application etc. We also can check some different properties of state by the SPIN tool. It can 

use in two basic modes: as a simulator and as a verifier. In simulation mode, SPIN uses to get 

a quick impression behavior type, which is captured in the system model. Verifier means 

correctness of detail model of the system under validation. Spin can be used as a LTL model 

checking system [2]. It supports correctness requirements expressible in linear time 

temporal logic. It can also be used to check safety and liveness properties. If there any 

violation, it produces an error trace. Using this error trace, a user can run a simulation of the 

execution that leads to the violation.  

 

 

 

 

 

 



 

5 | P a g e  
 

2.2 PROMELA 

 

PROMELA is a verification modeling language. If we elaborate it, then it becomes Process 

Meta Language. It uses to verify the logic and parallel system. Given a program in PROMELA, 

Spin can verify the model for correctness by performing random or iterative simulations of 

the modeled system's execution, or it can generate a C program that performs a fast 

exhaustive verification of the system state space. During simulations and verifications, SPIN 

checks for the absence of deadlocks, unspecified receptions, and not executable code [3]. 

There has several characteristics in PROMELA, those are modeling language for channel 

systems with a finite number of processes, synchronous and asynchronous channel-based 

communication and shared variables. The verifier can also be used to prove the correctness 

of system invariants and it can find non-progress execution cycles.    

 PROMELA programs consist of processes, message channels, and variables. Processes are 

global objects that represent the concurrent entities of the distributed system [3]. Message 

channels and variables can be declared either globally or locally within a process. Processes 

specify behavior, channels and global variables define the environment in which the 

processes run. 

 

 

2.2.1 mtype Declaration 

 

An mtype declaration represents some variable, which has some constant value. In C 

language we can use #define keyword to define some constant value here mtype also dose 

the same thing as well as C but in different representation.  

 

 

 

 



 

6 | P a g e  
 

mtype = {ack, buyer, order, confirm} 

 

#define ack true 

#define buyer 3 

#define  order 2 

 

 

Range of mtype is 0….255, as it is a keyword and in spin tool it use as a data type. It can obtain 

the values from the range of symbolic names that is declared. This data type can also be used 

inside chan declarations, for specifying the type of message fields. 

 

 

2.2.2 Channel Declaration 

 

Channels are used for transferring messages on those processes, which are activated. It is 

declared by the keyword chan. Channels by default store messages in first-in first-out order. 

Channel statement can be declared such as below: 

 

 chan   chan_name   = [  buffer size, N  ] of {  type   }  

    

After chan, we write the name of the channel name, after that inside third brace we declare 

the size of channel and then what type of data we use that declares in second brace. The 

buffer size indicates how many types we can use in type.  

 

 

2.2.3 Message Passing 

 

 To send data from one process to another it needs message passing. Message passing makes 

through the channel. Declaration of message passing is shown in below: 



 

7 | P a g e  
 

 

chan Byr_Brkr  = [2] of {mtype, bool}  

chan Byr_supplr[3] = [0] of {byte}; 

chan Channel; 

 

In Byr_Brkr channel, it can hold two messages and the message type is shown inside the 

brace. Here, message consists of two part those are mtype and bool. However, in Byr_supplr 

there are three channels and here it can hold only one type of message that is byte.   

The statement 

 

qname! expr 

It sends the value of the expression expr to the channel name qname. If there are several 

expression in that case by default the send statement is only executable if the target channel 

is not full otherwise it blocks.   

The statement: 

qname ? msg; 

It receives the message and retrieves it from the head of the channel, then stores it in the 

variable msg. The channels pass messages by first-in-first-out order. The receive statement 

is only executes while the sender channel is not empty. It will show error if there are more 

or fewer message fields then declaration for the message channel that is addressed. 

 

 

2.2.4 Control Flow Constructs 

 

 There are three control flow constructs in PROMELA. They are the selection, the repetition 

and the unconditional jump. 

 



 

8 | P a g e  
 

 

2.2.4.1 Selection 

 

In selection part, it can choose any of statement depending on the condition. Here we 

consider two values a and b give a simple introduction of selection part.  

if 

:: (a > b) -> option1 

:: (a < b) -> option2 

:: else break; 

fi 

 

The selection structure contains two execution sequences, each preceded by a double colon. 

Here only one sequence will go to be executed based on the condition. A sequence can be 

selected only if its first statement is executable. The first statement after double colon is 

called guard statement. This guard statement determines whether the execution sequence 

that follows is selectable for execution or not. . If not all guards are executable, then the 

process will block until one of them is selected.  In the example above, the guards are 

mutually exclusive, but they need not be. If more than one guard is executable, one of the 

corresponding sequences is selected non-deterministically. 

 

2.2.4.2 Repetition 

 

Repetition (loop) a logical extension of the selection structure is the repetition structure. For 

example: 

do 

:: count = count + 1 

:: count = count-1 

:: (count == 0) -> break 

od 

Only one option can be selected at a time in the structure of repetition in PROMELA. After 

the option completes, the execution of the structure is repeated. Break statement is used 



 

9 | P a g e  
 

here to terminate the structure normally. It transfers the control to the instruction that 

immediately follows the repetition structure. 

 

2.2.4.3 Unconditional Jump 

 

Unconditional jumps is the another way to break a loop and that is the goto statement. For 

example, one can modify the example above as follows: 

do 

:: count = count + 1 

:: a = b + 2 

:: (count == 0) -> goto done 

od 

done: 

skip; 

 

The goto in this example jumps to a label named done. A label can only appear before a 

statement. To jump at the end of the program, for example, a dummy statement skip is useful: 

it is a place-holder that is always executable and has no effect. 

 

 

2.2.5 Active proctype 

The active keyword, when added before any proctype definition, it means an instance of that 

proctype will be active in the initial system state. If, multiple proctype needs to run then it 

run as follows 

 active proctype A() { ... } 

active [4] proctype B() { ... } 

 

 

 



 

10 | P a g e  
 

2.2.6 init 

 

init is another way to active any process. It works as main process we can call function inside 

it as follows: 

 

proctype prc_x(byte x) 

{ 

 printf("x: %d, pid: %d\n",x,_pid)      

} 

init 

{ 

 run prc_x(0); 

 run prc_x(1) 

}  

 

We can run several processes by using init. It's working action is similar as main function of 

other languages. 

  

 

2.2.7 Atomic 

 

Atomic sequence makes a way to avoid the test and set problem. It indicates that the 

sequence is to be executed as one indivisible unit, non-interleaved with other processes. In 

the interleaving of process executions  no  process can execute statements from the moment 

that the first statement of an atomic sequence is executed until the last one has completed. 

example: 

atomic { 

 if 

 :: a = 1 

 :: a = 2 

 fi; 

 if 

 :: b = 1 

 :: b = 2 



 

11 | P a g e  
 

 fi 

} 

 

In this example, the variables a and b are assigned a single value, with no possible 
interleaving Statements from any other process. There are four possible ways to execute 
this atomic sequence. 

 
 

2.2.8 Assertion 
 
 
 
An important language construct in PROMELA that needs a little explanation is the assert 

statement. Statements of the form: 

 assert(any_boolean_condition) 

The assert statement takes any valid PROMELA expression as its argument. The expression 

works each time the statement is executed. If the expression evaluates to false then an 

assertion violation is reported. 

 

2.3 LTL (Linear Temporal Logic) 
 
 
 
It is important to find out desired property of a model by using model checking method. LTL 

operators actually check if the model satisfies this property. Therefore, SPIN accepts 

correctness properties expressed in linear temporal logic (LTL). SPIN performs the 

conversion to Büchi automata mechanically based on a simple on-the-fly construction [3]. 

The automata that are generated formally accept only those system executions that satisfy 

the corresponding LTL formula. 

 

 By using LTL we can find out different types of properties such as safety property, liveness 

property etc. which helps to find the desired checking of a model. A formula of LTL is built 

from atomic propositions and from operators that include the operators of the propositional 



 

12 | P a g e  
 

calculus as well as temporal operators. Some basic operators, which use in LTL is shown in 

below: 

 

 
     
 

 
 

 

 

 

 

          Table 2.1: Temporal Operator 
 

 

 General representation of a LTL property is given below: 

 

ltl [ name ] '{'  formula '}' 

 

 

 Inside the name brace, we include here the process name, and inside the formula brace we 

insert formula to see which property we want to represent like liveness property or safety 

property. Second operators can either be abbreviated with the symbols shown above, or 

spelled out in full as (always, eventually, until, implies, and equivalent). Below the example 

will show that the two properties are equivalent. 

 

ltl p1 { []<> p } 

ltl p2 { always eventually p } 

 

The model checker will perform an automatic negation of the formula to find counter-

examples from these properties. 

 



 

13 | P a g e  
 

SPIN version 6 and later an improvement is introduced that is LTL formula can contain any 

propositional formula so there is no restriction to use the lower-case propositional symbols 

as before. Now it can write as follows   

ltl p3 { eventually (a > b) implies len(q) == 0 } 

 

The operands of an LTL formula are often one-character symbols, such as p , q , r , but they 

can also be symbolic names, provided that they start with a lowercase character, to avoid 

confusion with some of the temporal operators which are in uppercase. The names or 

symbols must be defined to represent Boolean expressions on global variables from the 

model. The names or symbols are normally defined with macro definitions. 

 

 

 

2.4 Web Service Composition 

 

Web service is an emerging technology of building complex in distributed system. It is 

focusing on interoperability, support of efficient integration of distributed processes. 

Different services provided by different organization, perform basic activities that combined 

in suitable ways, allow for the definition of different complex business process [4]. Web 

service supports the interaction among different partners by providing a model of 

synchronous or asynchronous exchange of message. There are two key aspects in web 

service composition those are Choreography, Orchestration.         

 

 

 

 



 

14 | P a g e  
 

2.4.1 Choreography 

 

Choreography is that where different party involves and interacts with each other for a 

particular work [Figure 2.1]. Choreography manages the sequence of messages of each party 

where they involved in web services for the purpose of business process.   

 

 

 

 

 

 

 

 

 

 

 

          

    

     

    

    Figure 2.1: Web Services Choreography 

 

 

 



 

15 | P a g e  
 

2.4.2 Orchestration 

 

Orchestration works inside one party mechanism [Figure2.2]. In a single party, whatever 

work is done inside it that is managed by orchestration. It can interact with both internal and 

external web service. The interactions occur at the message level in orchestration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2.2: Web Services Orchestration  

 

 

 



 

16 | P a g e  
 

CHAPTER III 

 

Web Service Composition and 

Compensation 

 

3.1 Web Service Composition 

 

Web Service technology provides a platform so that we can develop distributed service. 

Composition of web services has received much interest to support business-to-business or 

enterprise application integration. Web service is define as self-contained, modular units of 

application logic, which provide business functionality to other applications via an Internet 

connection. Web services support the interaction of business partners and their processes 

by providing a stateless model of “atomic” synchronous or asynchronous message 

exchanges. These “atomic” message exchanges can be compose into longer business 

interactions by providing message exchange protocols that show the mutually visible 

message exchange behavior of each of the partners involved. The issue of how web services 

are to be described can be resolved in various ways. [5] 

 

We choose Broker system web service as an example to our verification. In broker system, 

web service negotiates purchase for its buyers and arranges loans for these. In this model, a 

buyer send a model request to broker for his/her desire products. Broker then uses its 

business partner Supplier to find the possible quote for the given model. Then another 

business model Loan Center arranges loan to buyer for the selected quote. Some notifications 

go to buyer about the quotes and the necessary loan arrangements. Both buyer and Loan 



 

17 | P a g e  
 

Center can cause interrupt to be invoke. Several negative possibilities might occur while we 

are running this entire process. For examples: loan can be refused due to failure of loan 

assessment, again customer can reject loan offer or quotes offer, Supplier may not provide 

proper quote to the broker etc. It needs to take some necessary steps so that the whole works 

never fail for all of these negative possibilities. Therefore, compensation needs to provide 

not to fall of all of these problems. 

 

 

3.2 Buyer 

 

In our system buyer can buy products from online. A buyer send request to broker for the 

products. When one gets his/her desire products from the broker then he/she can choose 

and order the product. If the overall process completed then buyer receives an 

acknowledgement, which will indicate the entire work is done.  

 

 

 

 

 

 

 

 

     

 

     

 

 

 

  Figure 3.1: Buyer Process 

 

 



 

18 | P a g e  
 

3.3 Broker 

 

Broker manages the major part of communication while a product is buying. At first buyer 

sends product details to the broker. After that dealing with supplier, broker provides good 

product details to the buyer. If buyer satisfied with the product then broker deals with loan 

dealer to give loan for buyer. In addition, it sends order request to the supplier for the 

selected product. If the Loan Center rejects loan then a loan refusal fault will occur. Since the 

product has already ordered, so compensation requires the order to be cancel. The refusal is 

then return to the customer. 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Broker Process 

 

 



 

19 | P a g e  
 

3.4 Supplier 

 

First, customer sends product details to broker. The request for a quotation passes from 

Broker to Supplier. Supplier and Buyer doses not interact with each other. When Buyer 

orders for the product to Broker, Broker contacts with Supplier and makes all arrangement 

to give buyer the appropriate product. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Supplier Process 

 

3.5 Loan Center: 

 

A loan service is a frequent example for business processes. Loan Center offers a loan to 

customer, who submits a proposal contains on loan amount. Lender asks for a certain 

amount who takes loan also gives some condition. If Buyer agrees with condition, then lender 

gives loan to the Broker. After that, complete buying process is resume. 

 

 

 

 

 



 

20 | P a g e  
 

 

     

     

 

 

 

 

 

Figure 3.4: Loan Center 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 3.5: Overall diagram of BUYER BROKER system 



 

21 | P a g e  
 

Overall Transection in Message Sequence Chart: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

           Figure 3.6: Buyer-Broker Message Sequence Chart 

 

 

 

 

 

 

 

 



 

22 | P a g e  
 

3.6 Compensation 

 

 

Business transection typically involve coordination and interaction between multiple 

partners. This transection involve hierarchies of active and these activities need to 

orchestrate. Business transection need to deal with faults that can arise in any stage of the 

transecting in usual database transection. A rollback mechanism is used to handle faults in 

order to provide automaticity to a transection. However, for transection that that required 

long period to complete. Also called LONG RUNING TRANSECTION (LRT), rollback is not 

always possible .LRs are usually interactive that communicate with several activities 

.handling faults where multiple partner are involved are both difficult and critical. Due to 

their interactive nature, LRTs are not able to be check pointed, e.g. a sent message cannot be 

unsent. In such case, a separate mechanism i.e. required to handle faults. A possible solution 

of the problem would be that the system designer could provide a mechanism to compensate 

the action that cannot be undone automatically. [6] 

 

 

3.7 Compensation Mechanism of Web Service   

 

In our model, we have used a compensation mechanism to handle errors. Errors are mainly 

occur during message passing. Since every transection reply to other services only when 

previous transection sent a confirmation message, so absent of confirmation message fails 

the overall transection process. For solving this problem, we have used a guard bite to 

identify where the transection process failed. If guard bit replies with false value then it call 

a process named “Abort” , which  stars from that point where guard bit found a false value 

and it pass a message to those whose are already transect message  for completing the 

overall  services. In chapter 4 section 4.6.5, we have implemented this mechanism by using 

PROMELA. A message sequence chart has been included to show how compensation 

mechanism sent abort message to other process, when any process sent any negative 



 

23 | P a g e  
 

confirmation or something like that. A message sequence chart with cancelation process has 

been shown in figure 3.6.It represents how cancelation message will be passed in overall 

model. 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     Figure 3.7: Message Sequence chart for Abort process 

 

 

 

 



 

24 | P a g e  
 

CHAPTER IV  
 

Service Choreography in PROMELA   

 

4.1 Encoding Process 

 

In this section we designed a model in PROMELA which is a logical representation of message 

based interaction among the process, so that we can explain web service choreography. Each 

section of the model contain one process that runs parallel. This model consist with a BUYER, 

BROKER, SUPPLYER and LOAN center section. Once BUYER need to order something then it 

contact with BROKER system. Basically all other communication system is occurred by 

BROKER system. After receiving order request, BROKER collect information from SUPPLYER 

and LOAN center through message passing communication and relevant order response 

send to the BUYER section. In the meantime BROKER system communicate with other 

system via message or relevant task with respective response of other system. Since each 

section are related with others, so any negative response can be occurred any time. For 

solving this situation we used compensation.  

 

4.2 Declaration of mtype 

 

To build this model at first we declare some message type variable that called “mtype” in 

PROMELA. “mtype” refers model variable  lists in PROMELA . We have used this data type for 

specifying message passing along with channel declaration. This”mtype” variable is not 



 

25 | P a g e  
 

initialized whether by default it will be initialized to zero. Corresponding individual name 

for each message are represented by this data type. The subsequent set of data are defined 

as  

 

BUYER system firstly sent an order message and BROKER receive it. After that, BROKER ask 

quotes information to SUPPLYER and relevant response are represented by SUPPLYER 

through QuoteS. BROKER receive it and another message named QuoteB pass to the BUYER 

system. So when BUYER take it decision for transecting message then it sent an ACK message 

to BORKER and then this system sent a message for processing order to SUPPLYER  by 

splrorder. Finally last system sent delivery to BROKER and final BUYER received message 

from BROKER. In the meantime BROKER system contact LOAN center by Reqln for lending 

and relevant response is passing by Reply message.   Cancel_Order and Abort_request 

message transection occurred when any negative response transfer from one system to 

others.   

 

4.3 Channel Declaration  

 

Channels are the track or the transection rout of each message passing. In this section we 

highlighted the channels construction that has been used to communicate services with each 

other. Channels are defined for each service that contains message type data. Channel 

declaration have to be global, otherwise message’s data cannot be received. We have used 

two types channel for message passing. One type for regular message transection and other 

used when compensation occurred. Each channel contains data length and type of data 

which can be Boolean type or byte etc. In our model we have used message type and Boolean 

type. 

mtype = { 

Order,QuoteS,QuoteB,Ack,RFQ,recived,Reqln,Reply,Abort_request,order,

splrordr,feadback,Cancel_Order } ; 



 

26 | P a g e  
 

 

 

Message type data named “mtype” contains information between two services and Boolean 

type contain confirmation data that has been confirmed by most recent previous transection 

among two services.    

4.4 Boolean types Representation 

 

Since Boolean type represent only true and false value, that’s why we use this property for 

checking the data type whether the most recent message transection is occurred or not. Each 

service transection message contains one confirmation towards next service.  

//Channels for transecting message 

3 chan buyer_broker1 = [2] of {mtype,bool}; 

4 chan buyer_broker2 = [2] of {mtype,bool}; 

5 chan broker_buyer1 = [2] of {mtype,bool}; 

6 chan broker_buyer2 = [2] of {mtype,bool};  

7 chan broker_buyer3 = [2] of {mtype,bool};  

8 chan broker_supplyer1 =[2] of {mtype,bool};  

9 chan broker_supplyer2 =[2] of {mtype,bool}; 

10 chan Brokerto_ohers1 =[2 ] of {mtype,bool}; 

11 chan Brokerto_ohers2 =[2 ] of {mtype,bool}; 

 

12 //Channels for transecting abort message 

 

13 chan abortbuyer_broker1=[1] of {mtype}; 

14 chan abortbuyer_broker2=[1] of {mtype}; 

15 chan abortbroker_supplier1=[1] of {mtype}; 

16 chan abortbroker_supplier2=[1] of {mtype}; 

17 chan abortbroker_buyer1=[1] of {mtype}; 

18  chan abortsupplyer_broker2=[1] of {mtype}; 

19 chan abortbroker_buyer2=[1] of {mtype}; 

20  chan abortsupplier_brokrt2=[1]of{mtype} 

  



 

27 | P a g e  
 

 

 

All Boolean value initialized by true, because we consider that no negative confirmation 

come from any transection. If any situation occur when any service send any negative 

confirmation then service process made Boolean value negative for completing the abort 

process.      

 

4.5 Process Creation  

 

Each service has its own process where formal methods and statement are written and 

message sending and receiving to its destination also include in this portion.  In PROMELA 

each process is represented by “proctype”, where it refers process type. Process type is used 

for declaring new process behavior. A process type consist with a name and body whether it 

has any parameters or not. Process can be created at any portion in the execution and it starts 

executing after run statement. Also it execute by active process where process need not any 

run statement. In our model we have used five process for representing the overall service 

architecture and these are proctype BUYER, BROKER, SUPPLIER, LOAN Center and Abort. 

Every process has its own methods and statement for checking the overall service, whether 

it work or not. A sample process that has been used in our model is given below: 

23  bool buyerorder_confirmation=true, rfq_confirmation=true; 

24 bool quots_confirmationS=true, quots_confirmationByr=true; 

25 bool ack_confirmation=true, loanreq_confirmation=true;  

26 bool  brokerorder_confirmation=true, Quote_confirmationBr,            

loanereply_confirmation=true; 

27 bool splrordr_confirmation=true, feadback_confirmation=true;

  



 

28 | P a g e  
 

 

 

4.6 General Model Representation in PROMELA 

 

To encoding our model in PROMELA we have divided our model into few fragments. Each 

fragments has a logical representation of PROMELA code. In first section a transaction will 

occur from BUYER to SUPPLIER and relevant response will be passed by second section. 

Third section will describe about Oder confirmation and Loan services and relative 

confirmation will be shown in last section. Overall section will be follow like below: 

 

 

 

 

 

 

 

 

active proctype LoanStar() 

123 { 

124 Brokerto_ohers1?Reqln(loanreq_confirmation);  

125 if 

126 ::loanreq_confirmation==true-

>Brokerto_ohers1!Reply(loanereply_confirmation); flag=1;  

127 ::else->run Abort(); 

128 fi; 

129  

130 } 



 

29 | P a g e  
 

Following phases are works as below: 

 

4.6.1 First Phase: 

 

First BUYER sent an ORDER request to BROKER service and BROKER receive it. Since 

BROKER always sent request to BUYER in first starting phase, so we used atomic statement. 

After receiving order request BROKER sent RFQ (request for quotes) to SUPPLIER. Following 

codes are given below  

 

4.6.2 Second Phase: 

 

 SUPPLIER will inform about quotes information to BROKER whether there are any quotes 

or not and relevant information will provides to BUYER for its next transection. 

 

 

 

 

  

34 atomic 

35 { 

36 buyer_broker1 ! Order(buyerorder_confirmation); 

37  }  

64 atomic 

65 { 

66 buyer_broker1 ? Order(buyerorder_confirmation);  

69 } 

70 if 

71 ::buyerorder_confirmation==true>broker_supplyer1! 

RFQ(rfq_confirmation);flag= flag+1; 

72 ::else->run Abort(); 

73 fi 

102 broker_supplyer1?RFQ(rfq_confirmation); 
 



 

30 | P a g e  
 

 

 

 

4.6.3 Third Phase:  

 

In this section BUYER send it’s acknowledge for order to BROKER. BROKER service then ask 

loan for LOAN Center if negative response occurred then an abort process sent cancel order 

message to all other services as like as every section whether any negative response 

occurred. If negative response sent absent message then BROKER send order process 

message to SUPPLIER. 

 

 

 

 

 

 

 

103 if 

104 ::rfq_confirmation==true-

>broker_supplyer2!QuoteS(quots_confirmationS);flag=flag+5; 

105 ::else->run Abort(); 

106 fi; 

broker_supplyer2?QuoteS(quots_confirmationS); 

75 if 

76 ::quots_confirmationS==true-

>broker_buyer2!QuoteB(quots_confirmationByr); flag= 

flag+1; 

77 ::else -> run Abort(); 

78 fi; 

 



 

31 | P a g e  
 

 

 

 

4.6.4 Fourth Phase: 

 

 SUPPLIER completed its task and relevant result sent to the BROKER. Finally BROKER 

received SYPPLIER delivery and send this message through channel to broker for final 

delivery. By this process overall transection come to their finishing point.  

 

 

42 if 

43 ::quots_confirmationByr== true->buyer_broker1 

!Ack(ack_confirmation); 

44 ::quots_confirmationByr== false->run Abort(); 

45 fi; 

79 buyer_broker1 ?Ack(ack_confirmation); 

80 if 

81 ::ack_confirmation==true-

>Brokerto_ohers1!Reqln(loanreq_confirmation);   

82 ::else->run Abort(); 

83 fi; 

Brokerto_ohers1?Reqln(loanreq_confirmation);  

125 if 

126 ::loanreq_confirmation==true-

>Brokerto_ohers1!Reply(loanereply_confirmation); flag=1;  

127 ::else->run Abort(); 

128 fi; 

84 Brokerto_ohers1?Reply(loanereply_confirmation); 

85 if 

86 ::loanereply_confirmation==true-

>broker_supplyer1!order(brokerorder_confirmation); 

87 ::else->run Abort(); 

88 fi; 

broker_supplyer1?order(broker order_confirmation ); 

 



 

32 | P a g e  
 

 

 

 

4.6.5 Abort Process 

 

This process will not be active until any negative confirmation passes any message to the 

others process. For checking this condition we have always checked a Boolean value which 

comes from previous transection. If they find absence of this value then it calls the Abort 

process which send a cancellation message to other process which already transferred 

message among the process. Basically this part describe how we implemented compensation 

mechanism in our web service. This process are given as below  

 

 

108 if 

109 ::brokerorder_confirmation==true-

>broker_supplyer1!splrordr(splrordr_confirmation); 

110 ::else->run Abort(); 

111 fi; 

broker_supplyer1?splrordr(splrordr_confirmation); 

90 if 

91 ::splrordr_confirmation==true-> broker_buyer3!feadback( 

feadback_confirmation);  

92 ::else->run Abort(); 

93 fi; 

94 broker_buyer3 ? feedback ( feedback-confirmation ) 

 

proctype Abort() 

104  { 

105  if 

106  ::ack_confirmation==false->Abrt=Abrt+1-

>abortsupplier_brokrt2!Cancel_Order(Abrt); 

107  ::brokerorder_confirmation==false->Abrt=Abrt+1-

>abortsupplier_brokrt2!Cancel_Order(Abrt); 

108  fi; 

109  }  



 

33 | P a g e  
 

CHAPTER V 

 

Web Service Composition Simulation  
 

In this section we have simulated our model that has been represented by a simulation tool 

named “SPIN”. Its basic is made with model checking. Simulation modeling is used to 

understand whether, under what conditions, and in which ways a part could fail and what 

loads it can tolerate. Basically, “SPIN” is a professional software tool for specifying and 

verifying concurrent and distributed systems. Models, written in a simple language called 

PROMELA, can be simulated randomly or interactively. After representing our BUYER –

BROKER web service model in PROMELA we have run this by a “SPIN” event named 

“Simulate” to check whether our model is working properly or not. If our Simulation comes 

with an absence of error then a simple message based figure comes to a window to represent 

a sequence of the overall model. Then verification and other related works are done by 

different process and steps. Sequential simulation process are described in the below 

section. [7] 

 

 

5.1 Web Service Composition Simulation Result 

 

Basically “SPIN” is a model checking simulator and it doesn’t represent a formal analysis, it 

actually provides a limited form support for verification like if statement, assertion checking, 

atomic condition and much more. While we have simulated our model it represented an 

impression that how overall model working in a certain condition .If we consider that each 

services are received positive response from other and no one sent Cancel request to other 



 

34 | P a g e  
 

service then a sequential message represent the overall model to understand that all 

condition have worked properly. Related figure are given below  

 

 

                 Figure 5.1: Simulation symbol of BUYER-BROKER Web Services 

 

5.2 Automata View  

 

Automata view refers, the study of the mathematical properties and its visualization that 

recognizes strings containing an even or odd number to symbolize the transection of one 

state/event to another.  Our model consist of five independent process one BUYER, one 

BROKER, one SUPPLIER, one LOAN Center (as Loan Star) and one Abort  which we have said 

before. Each corresponding process communicate with others by respective involvement. In 



 

35 | P a g e  
 

this section we describe about automata view of all this processes and then verifying this 

model using the language of PROMELA by the validation tool “SPIN”. 

 

5.2.1 BUYER Process 

 

The BUYER process automata figure is shown in the figure number 5.1. This process is 

consist with some message passing services. BUYER send an order request message to 

BROKER through their own channel and wait until BROKER response. After receiving 

BROKER response BUYER send ACK message to Broker and wait for final delivery. In 

PROMELA code “Feedback” signify the final delivery confirmation message. Since PROMELA 

made an automata view by the sequential line of code, therefor BUYER received lots of cancel 

order message which is not used in overall model. Because of while we designed our model 

negative confirmation can be arisen at any point, so we had to keep a special process for this 

situation. And that’s why few extra state has been shown in our automata view.  

 

5.2.2 BROKER Process  

 

BROKER process contains the maximum transection and provides maximum services among 

the process. BROKER communicates the BUYER, SUPPLIER and Loan Center to executing its 

task. BROKER received BUYER Order request and ACK confirmation and replies with quotes 

confirmation and final delivery .Also BROKER communicate with SUPPLIER to receive 

quotes information and final order delivery message against quotes information and BUYER 

final order   confirmation.in addition BROKER process also communicate with Loan Center 

for handling the loan request and receive. All individual sequential transection of BROKER 

are shown as below figure no 5.1 



 

36 | P a g e  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             Figure 5.2: Automata View of Abort process 



 

37 | P a g e  
 

  

Figure 5.3: Automata view of BUYER-BROKER web services  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

38 | P a g e  
 

5.2.3 SUPPLIER Process 

 

SUPPLIER received BROKER quotes request and send quotes information to the source. 

After that BROKER send its final order confirmation to SUPPLIER and wait until its 

response .Then SUPPLIER starts it processing order and make a reply to BROKER via 

feedback message. All these steps are shown in SUPPLIRE automata view figure 5.2.  

 

5.2.4 LOAN Center Process  

In section 5 we have describe about message sequence chart of the general model  and we 

have seen that LOAN center process become active only while BROKER system request a 

loan. So this process make it transection by “Replyln” or Cancel   Order message. So its 

automata view is very simple .Relevant figure are shown as below in figure 5.2 

 

5.2.5 ABORT Process  

Our model is consist with all positive response which means there are no negative response 

among the process or the services. So what will happen if any service sent any negative 

response? For solving this situation an abort process has been established in this model. In 

chapter three already we have discussed about compensation mechanism. In this part we 

have handle our model’s error by using compensation mechanism. Each transection check 

previous Boolean type value for next transection. So if it acquire any negative or false value 

then we call abort process. So this process sent cancel order message to the services that has 

been already used for transection. Actually in Abort automata view, process represent the 

compensation mechanism that has been used. All these steps are shown in Abort automata 

view figure 5.2.  

 



 

39 | P a g e  
 

Figure 5.4: Automata view of SUPPLIER, LOAN Center web service   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

40 | P a g e  
 

5.3   Verification 

 

In verification mode, SPIN analyses the model against the properties considering all possible 

executions performing an exhaustive search on the state space. We use PROMELA as the 

formal specification language. We define our requirements as LTL (Linear Temporal Logic) 

formulae and convert these to never claims in PROMELA. In the following sections, all the 

formulae and related definitions are coded in PROMELA. [8] 

 

5.3.1   LTL Verification  

 

 
LTL refers liner temporal logic. Which is an infinite sequence of states where each point in 

time has a unique successor, based on a linear-time perspective. In our model we have used 

this logics and special syntax for justify weather our model has a fault point or it just worked 

properly. LTL has a lots of criteria or property for checking the model. So we have choose 

shifty and liveness property for Verify our model. [9] 

 

5.3.1.1 Safety 

For measuring the correctness of this composition we can perform a comprehensive 

verification with spin to prove some safety properties, such as absence of deadlock, 

unreachable code, and unspecified receptions. In this properties check the loan request 

confirmation and loan reply confirmation message send and received supply order 

confirmation. This property definite below 

 

It is always true that if loan request confirmation and loan reply confirmation become true then 

it implies that supply order confirmation will be true. 



 

41 | P a g e  
 

The LTL representation are given below  

 

First we have written some LTL code and then convert this logic into never claim property 

of PROMELA   to check weather this logic is working on overall code or not.  

 

5.3.1.2 Liveness 

 

LTL liveness property refers that in the future in any time something good will happen. So 

for checking this we have used a simple LTL. We have written some LTL code and then 

convert this logic into never claim property to check weather this logic is working or not.  

 

. The formal representation of testing this property are described by below 

“If Buyer order confirmation becomes true it implies that eventually state value will be equal 

to 5” 

Here the LTL representation of checking the liveness property 

 

 

 

ltl p{[]((loanreq_confirmation==true)&&(loanereply_confirmation==true))  

-> ((splrordr_confirmation==true))} 

 

 

ltl p { (buyerorder_confirmation==true)->(<>(state_Value==5))} 

 



 

42 | P a g e  
 

Chapter VI 

 

Conclusion  

 

6.1   Summary 

 

Web service composition is an important issue in this modern age. Many services are now 

running as a web service to feel comfort for the consumer. Therefore, it is also important to 

have a verified web service. While a web service is running may issues came out from that, 

many changes can happen during a running services. In that case, it is not possible to run 

that service repeatedly from the beginning. Therefore, its verification is important to figure 

out the proper problem. Also if there is possibility to use some compensation mechanism for 

the failure part then web service will be more efficient and strong for working. 

    

6.2   Future Work 

 

Our future plan is to make the compensation part much stronger. We are also interested to 

make a comparison table between our project and compensating CSP to improve this project.  

    

 

 



 

43 | P a g e  
 

Appendix 

 

A.1 PROMELA ENCODING  

 

1 mtype={Order,QuoteS,QuoteB,Ack,RFQ, 

recived,Reqln,Reply,Abort_request,order, 

2 splrordr,feadback,Cancel_Order}; 

3 chan buyer_broker1 = [2] of {mtype,bool}; 

4 chan buyer_broker2 = [2] of {mtype,bool}; 

5 chan broker_buyer1 = [2] of {mtype,bool}; 

6 chan broker_buyer2 = [2] of {mtype,bool};  

7 chan broker_buyer3 = [2] of {mtype,bool};  

8 chan broker_supplyer1 =[2] of {mtype,bool};  

9 chan broker_supplyer2 =[2] of {mtype,bool}; 

10 chan Brokerto_ohers1 =[2 ] of {mtype,bool}; 

11 chan Brokerto_ohers2 =[2 ] of {mtype,bool};  

13 chan abortbuyer_broker1=[1] of {mtype}; 

14 chan abortbuyer_broker2=[1] of {mtype}; 

15 chan abortbroker_supplier1=[1] of {mtype}; 

16 chan abortbroker_supplier2=[1] of {mtype}; 

17 chan abortbroker_buyer1=[1] of {mtype}; 

18 chan abortsupplyer_broker2=[1] of {mtype}; 

19 chan abortbroker_buyer2=[1] of {mtype}; 

20 chan abortsupplier_brokrt2=[1]of{mtype}  

23 bool buyerorder_confirmation=true, rfq_confirmation=true; 

24 bool quots_confirmationS=true, quots_confirmationByr=true; 

25 bool ack_confirmation=true, loanreq_confirmation=true;   



 

44 | P a g e  
 

26 boolbrokerorder_confirmation=true,Quote_confirmationBr, 

loanereply_confirmation=true; 

27 bool splrordr_confirmation=true, feadback_confirmation=true; 

29 byte flag=0; 

31 active proctype Buyer() 

32 {  

34 atomic 

35 { 

36 buyer_broker1 ! Order(buyerorder_confirmation); 

37  }  

39 broker_buyer2?QuoteB(quots_confirmationByr);  

42 if 

43 ::quots_confirmationByr==true->buyer_broker1 

!Ack(ack_confirmation); 

44 ::quots_confirmationByr== false->run Abort(); 

45 fi; 

47 broker_buyer3?feadback( feadback_confirmation); 

48 abortbroker_buyer1?Cancel_Order;  

52 abortbroker_buyer1?Cancel_Order; 

53 abortbroker_buyer2?Cancel_Order; 

54 abortbroker_buyer2?Cancel_Order; 

55 abortbroker_buyer1?Cancel_Order; 

56 abortbroker_buyer2?Cancel_Order; 

57 abortbroker_buyer2?Cancel_Order; 

58 abortbroker_buyer2?Cancel_Order; 

60 } 

62 active proctype Broker() 

63 { 

64 atomic 

65 { 

66 buyer_broker1 ? Order(buyerorder_confirmation); 

67 //flag=1;  



 

45 | P a g e  
 

69 } 

70 if 

71 ::buyerorder_confirmation==true-

>broker_supplyer1!RFQ(rfq_confirmation);flag= flag+1; 

72 ::else->run Abort(); 

73 fi; 

74 broker_supplyer2?QuoteS(quots_confirmationS); 

75 if 

76 ::quots_confirmationS==true-

>broker_buyer2!QuoteB(quots_confirmationByr); flag= flag+1; 

77 ::else -> run Abort(); 

78 fi; 

79 buyer_broker1 ?Ack(ack_confirmation); 

80 if 

81 ::ack_confirmation==true-

>Brokerto_ohers1!Reqln(loanreq_confirmation);   

82 ::else->run Abort(); 

83 fi; 

84 Brokerto_ohers1?Reply(loanereply_confirmation); 

85 if 

86 ::loanereply_confirmation==true-

>broker_supplyer1!order(brokerorder_confirmation); 

87 ::else->run Abort(); 

88 fi; 

89 broker_supplyer1?splrordr(splrordr_confirmation); 

90 if 

91 ::splrordr_confirmation==true->broker_buyer3!feadback( 

feadback_confirmation);  

92 ::else->run Abort(); 

93 fi; 

95 abortsupplyer_broker2?Cancel_Order; 

96 abortbuyer_broker1?Cancel_Order; 



 

46 | P a g e  
 

97 abortsupplier_brokrt2?Cancel_Order; 

98 } 

100 active proctype Supplier() 

101 { 

102 broker_supplyer1?RFQ(rfq_confirmation);  

103 if 

104 ::rfq_confirmation==true-

>broker_supplyer2!QuoteS(quots_confirmationS);

 flag=flag+5; 

105 ::else->run Abort(); 

106 fi; 

107 broker_supplyer1?order(brokerorder_confirmation); 

108 if 

109 ::brokerorder_confirmation==true-

>broker_supplyer1!splrordr(splrordr_confirmation); 

110 ::else->run Abort(); 

111 fi; 

113 abortbroker_supplier1?Cancel_Order; 

114 abortbroker_supplier1?Cancel_Order; 

115 abortbroker_supplier1?Cancel_Order; 

116 abortbroker_supplier1?Cancel_Order; 

117 abortbroker_supplier1?Cancel_Order; 

118 abortbroker_supplier1?Cancel_Order; 

119 abortbroker_supplier1?Cancel_Order; 

120 }  

122 active proctype LoanStar() 

123 { 

124 Brokerto_ohers1?Reqln(loanreq_confirmation);  

125 if 

126 ::loanreq_confirmation==true-

>Brokerto_ohers1!Reply(loanereply_confirmation); flag=1;  

127 ::else->run Abort(); 



 

47 | P a g e  
 

128 fi; 

130 Brokerto_ohers1?Cancel_Order; 

131 Brokerto_ohers1?Cancel_Order; 

132 Brokerto_ohers1?Cancel_Order; 

133 Brokerto_ohers1?Cancel_Order;  

137 } 

139  proctype Abort() 

140 { 

142 if 

143 ::(buyerorder_confirmation==false)-

>abortbroker_supplier1!Cancel_Order; 

144 ::abortbroker_buyer1!Cancel_Order; 

145 fi; 

147 if 

148 ::rfq_confirmation==false-

>abortbroker_supplier1!Cancel_Order; 

149 ::rfq_confirmation==false->abortbroker_buyer1!Cancel_Order;  

150 fi; 

152 if 

153 ::quots_confirmationS==false-

>abortsupplyer_broker2!Cancel_Order; 

154 ::abortbroker_buyer2!Cancel_Order;  

155 fi; 

157 if 

158 ::quots_confirmationByr== false-

>abortbroker_buyer2!Cancel_Order; 

159 ::abortbroker_supplier1!Cancel_Order;   

160 fi; 

162 if 

163 ::ack_confirmation==false-> 

164 atomic 

165 { 



 

48 | P a g e  
 

166 abortbuyer_broker1!Cancel_Order; 

167 abortbroker_supplier1!Cancel_Order; 

168 Brokerto_ohers1!Cancel_Order; 

169 } 

170 fi; 

172 if 

173 ::loanreq_confirmation==false-

>Brokerto_ohers1!Cancel_Order; 

174 ::abortbroker_supplier1!Cancel_Order; 

175 ::abortbroker_buyer2!Cancel_Order; 

176 fi; 

178 if 

179 ::loanereply_confirmation==false-

>abortbroker_supplier1!Cancel_Order; 

180 ::abortbroker_buyer1!Cancel_Order;  

181 fi; 

183 if 

184 ::brokerorder_confirmation==false-

>abortbroker_supplier1!Cancel_Order; 

185 ::Brokerto_ohers1!Cancel_Order; 

186 ::abortbroker_buyer2!Cancel_Order;  

187 fi; 

189 if 

190 ::splrordr_confirmation==false-

>abortsupplier_brokrt2!Cancel_Order; 

191 ::Brokerto_ohers1!Cancel_Order; 

192 ::abortbroker_buyer2!Cancel_Order;  

193 fi; 

194 } 

205 ltl 

p{[]((loanreq_confirmation==true)&&(buyerorder_confirmation

==false))->(splrordr_confirmation==false)} 



 

49 | P a g e  
 

207 ltl 

p{[]((loanreq_confirmation==true)&&(loanereply_confirmation

==true))-> (!(splrordr_confirmation==true))} 

215 ltl  

p { (rfq_confirmation==true)-> (<>(quots_confirmationByr==true))} 

 

 

A.2 LTL Verification 

 

A.2.1 LTL Codes 

 

ltl 

p{[]((quots_confirmationS==true)&&(ack_confirmation==true))>(fea

dback_confirmation==true)} 

 

ltl  

p {[]((quots_confirmationS==false)&&(ack_confirmation==false))-

>(feadback_confirmation==true)} 

 

 ltl  

p{[]((buyerorder_confirmation==true)&&(flag==1))-

>((quots_confirmationS==true)&&(flag==5))} 

 

 

 



 

50 | P a g e  
 

ltl 

 p{(buyerorder_confirmation==true)-

>(<>(splrordr_confirmation==true))} 

 

ltl  

p {    (loanreq_confirmation==true)->(splrordr_confirmation==true) 

} 

 

 

A.2.1.1 Liveness  

 

ltl  

p { (rfq_confirmation==true)-> (<>(quots_confirmationByr==true))} 

 

 

A.2.1.2 Safety  

 

ltl  

p{[]((loanereply_confirmation==false)&&(splrordr_confirmation== 

false))->(feadback_confirmation==true) }  

 

 

 

 



 

51 | P a g e  
 

Reference: 

 

[1] Shamim H Ripon .Process Algebraic Support for Web Service Composition 

[2] Shamim Ripon, Sumaya Mahbub and K. M. Imtiaz-ud-Din. Verification of a Security    

Adaptive Protocol Suite Using SPIN. Department of Computer Science and Engineering, East 

West University, Dhaka, Bangladesh 

[3] Concise PROMELA Reference [http://spinroot.com] 

[4] Raman Kazhamiakin, Marco Pistore. Formal Verification of Requirement using SPIN: A 

Case Study on Web Service   

[5] Biplav Srivastava, Jana Koehler. Web Service Composition - Current Solutions and Open  

Problems http://user.enterpriselab.ch/~takoehle/publications/bpm/icaps03-ws.pdf 

[6] Process algebraic support for web service composition. SH Ripon - ACM SIGSOFT 

Software Engineering Notes, 2010.Cited by 3 

[7] Ben-Ari Mordechai. “Principles of the Spin Model 

Checker”[http://www.springer.com/] 

[8]  SH Ripon, SF Ahmed, YR AfrozaYasmin, KM Imtiaz-Ud-Din. Formal Analysis of a Ranked 

Neighbour MANET Protocol Suite. International Journal of Future Computer and 

Communication (IJFCC) 3 (5) 

[9] Linear Temporal Logic.www.cs.colostate.edu/~france/CS614/Slides/Ch5-Summary.pdf 

 

https://scholar.google.com/scholar?oi=bibs&cluster=16745139572307997019&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&hl=en&cites=16745139572307997019&as_sdt=5
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=TwsRIwgAAAAJ&cstart=20&citation_for_view=TwsRIwgAAAAJ:4TOpqqG69KYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=TwsRIwgAAAAJ&cstart=20&citation_for_view=TwsRIwgAAAAJ:4TOpqqG69KYC

