
Verification Of Web Service Composition And

Compensation By Using FSP

By

Farhana Sultana

&

Fahmida Rahman

Computer Science and Engineering

East West University

Fall 2015

Verification Of Web Service Composition And

Compensation By Using FSP

Submitted By

Farhana Sultana

ID: 2011-3-60-004

&

Fahmida Rahman

ID: 2012-1-60-025

A project submitted in partial fulfillment for the degree of
Bachelor of Science in Computer Science and Engineering

In the

Faculty of Science and Engineering

Department of Computer Science and Engineering

East West University

Fall 2015

i

Declaration

We, hereby certify that our thesis work solely to be our own scholarly work. To the best of

our knowledge, it has not been collected from any source without the due

acknowledgement and permission. It is being submitted in fulfilling the requirements for

the degree of Bachelor of Science in Computer Science and Engineering. It has not been

submitted, either in whole or in part for a degree or examination at this or any other

university.

Farhana Sultana

(2011-3-60-004)

Fahmida Rahman

(2012-1-60-025)

ii

Letter of Acceptance

The Project entitled “Verification of Web Service Composition And Compensation By

Using FSP” submitted by Farhana Sultana [2011-3-60-004] and Fahmida Rahman [2012-1-

60-025] to the Department of Computer Science and Engineering, East West University,

Dhaka, Bangladesh in the semester of Fall 2015 is approved satisfactory in partial

fulfillment of requirements for award of the degree of Bachelor of Science in Computer

Science and Engineering.

Dr. Shamim Hasnat Ripon

SUPERVISOR and CHAIRPERSON

Department of Computer Science and Engineering

East West University

Dhaka-1212, Bangladesh

iii

Abstract

A platform-independent software component available in the distributed environment of

the Internet is titled as Web service. Many Business organizations are publishing their

applications functionalities on the web. A web service has a limited functionality alone. So

to support business to business interactions it is a crying need to aggregate web services

and assembled them in a goal oriented interface. To provide atomicity to a transaction

where multiple partners are involved handling faults are both difficult and critical. A

possible solution of the problem would be that the system designer can provide a

mechanism to compensate the actions that cannot be undone automatically. In this project

we have composed a car broker system and implemented a compensation mechanism that

will compensate all services from their point of cancelation. We have modeled the service

choreography in FSP and used LTSA tool to animate the transitions. Every model should be

verified before implementation, we tried to verify the system composition using property

processes available in FSP.

iv

Acknowledgement

It is with enormous appreciation that we acknowledge the contribution of our supervisor,

Dr. Shamim Hasnat Ripon, Chairperson and Associate Professor of Department of

Computer Science and Engineering, East West University. Without his proper guidance,

encouragement and support this thesis would have remained a dream. We consider it as an

honor to work with him. We are also indebted to our parents, other professors of the

department and friends for their support and encouragements. Finally, thanks to the

Almighty, who gave us the patience to complete the task successfully.

v

TABLE OF CONTENTS

CHAPTER 1 .. 1

Introduction ... 1

1.1 Introduction and Motivation ... 1

1.2 Objectives ... 2

1.3 Contribution .. 2

1.4 Outline ... 3

CHAPTER 2 .. 4

Background .. 4

2.1 Web Service and Composition .. 4

2.1.1 Orchestration ... 4

2.1.2 Choreography... 5

2.2 FSP ... 6

2.2.1 Modeling Processes in FSP ... 7

2.2.2 Property Processes to verify the System ... 13

2.3 Compensating CSP (cCSP) ... 14

CHAPTER 3 .. 16

Car Broker Service Composition ... 16

3.1 Car Broker Web Service ... 16

3.1.1 BUYER ... 16

3.1.2 BROKER .. 17

3.1.3 SUPPLIER .. 18

3.1.4 LOANSTAR .. 18

3.2 Compensation in Car Broker Web Service ... 21

3.2.1 Compensation .. 21

3.2.2 Compensation Mechanism of Car Broker Web Service ... 21

CHAPTER 4 .. 23

Service Composition in FSP ... 23

4.1 Coding Representation ... 23

4.2 Modeling the Car Broker Service in FSP .. 23

vi

4.2.1 Declaring Original Processes .. 23

4.2.2 Declaring Compensation Processes ... 28

4.2.3 Main Compensation Process.. 32

4.2.4 Final Compositions ... 35

CHAPTER 5 .. 36

Composition Verification ... 36

5.1 Property Processes for Verification .. 36

5.2 Property Processes to Verify Compensation ... 36

5.2.1 Verifying Buyer Compensation .. 36

5.2.2 Verifying Supplier Compensation .. 37

5.2.3 Verifying LoanStar Compensation.. 38

5.3 Verifying Main Compensation Mechanism ... 39

5.4 Verifying System Composition .. 43

CHAPTER 6 .. 46

Comparison With cCSP ... 46

6.1 Introduction ... 46

6.2 Sequential Composition ... 46

6.3 Choice .. 47

6.4 Parallel Composition ... 47

6.5 Compensation Pair ... 49

CHAPTER 7 .. 51

Conclusion .. 51

7.1 Summary .. 51

7.2 Future Work ... 51

Appendix A ... 52

A.1 Buyer Web Service .. 52

A.2 Broker Web Service... 52

A.3 Supplier Web Service.. 53

A.4 LoanStar Web Service .. 54

A.5 Main Compensation Process .. 54

A.6 Property Processes .. 55

vii

A.7 Car Broker Web Service... 58

References .. 59

viii

LIST OF FIGURES

Figure 2.1: Composition of Web Services with Orchestration... 5

Figure 2.2: Composition of Web Services with Choreography .. 6

Figure 2.3: LTSA representation of CLOCK process. ... 7

Figure 2.4: LTSA representation of Deterministic process DRINKS. ... 8

Figure 2.5: LTSA representation of Non-deterministic process COIN. .. 8

Figure 2.6: LTSA representation of LEVEL process. ... 9

Figure 2.7: LTSA representation of COUNT process. .. 10

Figure 2.8: LTSA representation of Composition CONVERSE_ITCH. ... 11

Figure 2.9: LTSA representation of Composition MAKER_USER. .. 12

Figure 2.10: LTSA representation of Relabeling in CLIENT_SERVER. .. 13

Figure 2.11: LTSA representation of Property POLITE. .. 14

Figure 3.1: Architectural view of Buyer .. 17

Figure 3.2: Architectural view of Broker Web Service .. 17

Figure 3.3: Architectural view of Supplier Web Service ... 18

Figure 3.4: Architectural view of LoanStar Web Service .. 18

Figure 3.5: Architectural view of Car Broker Web Service .. 19

Figure 3.6: Overall Transaction in Message sequence Chart .. 20

Figure 3.7: Overall Transaction in Message sequence Chart with Compensation 22

Figure 4.1: LTSA representation of Buyer Process ... 24

Figure 4.2: LTSA representation of BRK_PHASE1 Process ... 24

Figure 4.3: LTSA representation of BRK_PHASE2 Process ... 26

Figure 4.4: LTSA representation of Supplier Process .. 27

Figure 4.5: LTSA representation of LoanStar Process ... 27

Figure 4.6: LTSA representation of COMP_B Process .. 28

Figure 4.7: LTSA representation of COMP_BRK Process .. 29

Figure 4.8: LTSA representation of BRK_PHASE2_COMP Process .. 30

Figure 4.9: LTSA representation of BRK_PHASE1_COMP Process ... 31

Figure 4.10: LTSA representation of COMP_S Process.. 31

Figure 4.11: LTSA representation of COMP_L Process .. 32

Figure 4.12: LTSA representation of CMAIN Process .. 33

Figure 5.1: LTSA representation of safety property SAFE_COMP_B .. 36

ix

Figure 5.2: LTSA representation of BSAFE process ... 37

Figure 5.3: LTSA representation of safety property SAFE_COMP_S .. 37

Figure 5.4: LTSA representation of SSAFE process ... 38

Figure 5.5: LTSA representation of safety property SAFE_COMP_L .. 38

Figure 5.6: LTSA representation of LSAFE process ... 39

Figure 5.7: LTSA representation of safety property SAFE_MSG_BRK ... 40

Figure 5.8: LTSA representation of safety property SAFE_MSG_B ... 41

Figure 5.9: LTSA representation of safety property SAFE_MSG_S ... 41

Figure 5.10: LTSA representation of safety property SAFE_MSG_L .. 42

Figure 5.11: LTSA representation of safety property SAFE_SYSTEM .. 43

Figure 5.12: LTSA representation of safety property SAFE_REQ1, SAFE_REQ2,
SAFE_REQ3 ... 44

Figure 5.13: LTSA representation of MAINSYSTEM_CHECK .. 45

Figure 6.1: LTSA representation of SEQUENCE ... 46

Figure 6.2: LTSA representation of the compensation process P_Q. .. 49

x

LIST OF TABLE

Table 2.1: cCSP syntax .. 15

Table 6.1: Comparison between cCSP and FSP... 50

Page 1|59

CHAPTER 1

Introduction

1.1 Introduction and Motivation

Business transactions need multiple partner involvement, coordination and interaction

with each other. Many business companies or enterprises publish their applications

functionalities on the web using a web service format. Web services are defined as self-

contained, modular units of application logic, which provide business functionality to other

applications through an Internet connection. Each service provider is a self-contained

software system having its own threads of control.

In this technological era business applications like web services allows greater efficiency

and availability for business. A web service alone has a limited functionality which may not

be sufficient to respond to the user's request. Whereas a composition of several web

services can achieve a specific goal. From a user perspective, the composition might be

considered as a simple web service, even though it is composed of several web services. In

an essence, the aggregation is a collaboration of many Web service providers.

Models are simplified representations of real-world entities. We model something to better

understand it. We can use models to focus on interesting aspects, visualize potential

outcomes and create mechanisms to test and verify an approach. We need model checking

to verify correctness properties such as the absence of deadlocks and similar critical states

that can cause the system to crash. Every model should be verified before implementation.

There are various languages to model a system and verify it properly. BPEL, cCSP and FSP

are most handful language to model a system with their notations. Among them FSP has the

most expressive and powerful approach to visualize the system. To provide atomicity to a

transaction handling faults where multiple partners are involved are both difficult and

critical. A possible solution of the problem would be that the system designer can provide a

mechanism to compensate the actions that cannot be undone automatically. In BPEL

compensation is expressed in a XML notation, in cCSP it is expressed in a compensation

pair but it can be expressed in FSP as a separate process and represented elaborately.

Page 2|59

1.2 Objectives

The objectives of our project are as follows:

 Analyzing the web service composition in respect to the composition mechanism

orchestration and choreography.

 Modeling a composition using Finite State Process (FSP) notations and Labeled

Transition System Analyzer (LTSA) tool.

 Introducing a compensation mechanism as a fault handler that could handle all the

failed transactions and could manage all the compensation processes of every

component processes.

 Verifying the designed model as it is specified in the model specification. Ensuring

that in a concurrent execution all synchronizing points executes properly and no

deadlock and such critical states occur that violate the correctness properties.

1.3 Contribution

Our contributions in the project are as follows:

We have used Finite State Process (FSP) notations to describe the model and LTSA tool to

generate the corresponding Labeled transition Diagrams. We select Car Broker Web

Service as our model. We analyzed the model and identified various components of the web

service as well as the composition among the services. Then implement the system

according to their interactions.

We have implemented a compensation mechanism which will describe the compensation

actions from the point of cancelation. Each process has its own compensation process and a

main compensation process to control the whole mechanism.

We added some safety properties to verify synchronizations among processes in a

concurrent execution and checked the correctness properties such as the absence of

deadlocks and similar critical states that can cause the system to crash.

Page 3|59

1.4 Outline

Chapter 1: Firstly we represent about our motivation to work, Specify our objectives and

then the contribution that we have made.

Chapter 2: Web service composition and two ways to compose the web services

(Choreography and orchestration). Then a brief description is given about Finite State

Process (FSP) which is used to specify our model and about LTSA tool to compile FSP

notations. After that we discussed about Compensating CSP (cCSP).

Chapter 3: This chapter describes about car broker service composition including the

contribution of each web services in the system and how the compensation process works.

Chapter 4: The coding representation of our service in FSP.

Chapter 5: Define some Safety properties in order to verify our web service composition

and compensation by composing them with required safety properties.

Chapter 6: Differences of using notations in FSP and cCSP are discussed in brief.

Chapter 7: At last, in this chapter we summarized our work and give a definition about our

future plan.

Page 4|59

CHAPTER 2

Background

2.1 Web Service and Composition

Web services are distributed, independent processes which communicate with each other

through the exchange of messages. The coordination between business processes is

particularly crucial as it includes the logic that makes a set of different software

components become a whole system. Web services provided by various organizations can

be interconnected to implement business collaborations, leading to composite web

services. Business collaborations require interactions driven by explicit process models.

Web services are driven by the paradigm of the so called service oriented architecture

(SOA), which describes the relationships, that exists among service providers, service

consumers, and service brokers and there by provides an abstract execution environment

for web services. We refer to a service implemented by combining the functionality

provided by other web services as a composite service, and the process of developing a

composite web service as service composition. [1, 2]

There are two key aspects in web service composition those are choriography and

orchestration.

2.1.1 Orchestration

“A single director in control”

In Orchestration several web services are involved in an operation. In the operation one

central process, can be a web service, leads the other web services and coordinates the

execution of different parts of the operation on different web services. As all the data are

exchanged via the central coordinator of the orchestration so it needs to understand the

specific composition logic and other web services need not to know that they are being

incorporated in a composition process and taking part in a larger business process. Every

Page 5|59

component service considers the central coordinator just as one consumer of its service.

Orchestration describes how web services interact with each other through messages,

including the business logic and execution order. [3, 4]

Figure 2.1: Composition of Web Services with Orchestration [3]

2.1.2 Choreography

“Distributed control”

Choreography is based on collaboration; it does not rely on a central coordinator. In

choreography each web service needs to be aware of the business process. All participants

need to know when to execute its operations, what messages to exchange, when to

exchange the messages and with whom it to interact. [3, 4]

Page 6|59

Figure 2.2: Composition of Web Services with Choreography [3]

2.2 FSP

FSP stands for Finite State Processes. Finite State Processes is an algebraic notation to

describe process models. The constructed FSP can be used to model the exact transition of

workflow processes through a modeling tool such as the Labeled Transition System

Analyzer (LTSA), which provides compilation of an FSP into a Labeled Transition System.

Models are described using state machines, known as Labeled Transition Systems LTS.

These are described textually as finite state processes (FSP) and displayed and analyzed by

the LTSA analysis tool. This tool gives an opportunity to test the model workflows before

implementing the model. LTS is the graphical form and FSP is the algebraic form. [5]

FSP consists of Action Prefix, Process Definition, Choice, Indexed Processes and Actions,

Guarded Actions, properties, Constant and Range Declarations, Variable Declaration,

Process Alphabets and so on.

Page 7|59

2.2.1 Modeling Processes in FSP

A service can be a process or a composition of several processes. A process is the execution

of a sequential program. It is modeled as a finite state machine which transits from state to

state by executing a sequence of atomic actions. In practical terms, an action might be a

communication, a signals, or perhaps, traditional execution of a task. [6]

In FSP processes are two types such as Primitive Processes and Composite Processes.

Primitive Processes

Primitive processes are defined using action prefix, choice and recursion. Both action labels

and local process names can be indexed or non-indexed.

Action Prefix "->"

Action prefix defines a transition between states. If x is an action and P a process then the

action prefix (x->P) describes a process that initially engages in the action x and then

behaves exactly as described by P. The action prefix operator “->” always has an action on

its left and a process on its right. In FSP, identifiers beginning with a lowercase letter

denote actions and identifiers beginning with an uppercase letter denote processes. A

primitive process definition is terminated by a full stop. [6]

The following definition describes the process CLOCK which repeatedly engages in the

action tick.

CLOCK = (tick -> CLOCK).

The LTS corresponding to the definition above is:

Figure 2.3: LTSA representation of CLOCK process.

Choice "|"

Choice is represented as a state with more than one outgoing transition. Choice operator “|”

can express a choice of more than two actions. Choices are of two types, Deterministic and

Page 8|59

Non-Deterministic. The FSP language provides mechanisms for deterministic and non-

deterministic choice. Their definitions are as follows:

Deterministic Choice: If x and y are actions then (x->P | y->Q) describes a process which

initially engages in either of the actions x or y. The execution of action x will have

subsequent behavior described by P. Similarly, the execution of y will have subsequent

behavior described by Q.

The example describes the behavior of a dispensing machine which dispenses coffee if the

red button is pressed and tea if the blue button is pressed.

DRINKS = (red->coffee->DRINKS | blue->tea->DRINKS).

Figure 2.4: LTSA representation of Deterministic process DRINKS.

Non-deterministic Choice: The process (x->P | x->Q) is said to be non-deterministic since

after the action x, it may behave as either P or Q. The COIN process defined below and

drowns as a state machine in Figure is an example of a non-deterministic process. [6, 7]

COIN = (toss->heads->COIN | toss->tails->COIN).

Figure 2.5: LTSA representation of Non-deterministic process COIN.

Page 9|59

Conditional

A conditional takes the form: if expr then local_process else local_process. FSP supports only

integer expressions. A non-zero expression value causes the conditional to behave as the

local process of the then part; a zero value causes it to behave as the local process of

the else part. The else part is optional, if omitted and expr evaluates to zero the conditional

becomes the STOP process.

Example:

LEVEL = (read[x:0..2] -> if x>=1 then (high -> LEVEL) else

(low -> LEVEL)).

Figure 2.6: LTSA representation of LEVEL process.

Guarded Actions

It is often useful to define particular actions as conditional, depending on the current state

of the machine. We use Boolean guards to indicate that a particular action can only be

selected if its guard is satisfied. The choice (When B x->P | y->Q) means that when the

guard B is true then the actions x and y are both eligible to be chosen, otherwise if B is false

then the action x cannot be chosen. The example below is a process that encapsulates a

count variable. The count can be increased by inc operations and decreased by dec

operations. The count is not allowed to exceed N or be less than zero. [6]

COUNT (N=3) = COUNT[0],

COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]

 |when(i>0) dec->COUNT[i-1]).

Page 10|59

Figure 2.7: LTSA representation of COUNT process.

FSP supports only integer expressions; consequently, the value zero is used to represent

false and any non-zero value represents true.

Sequential Composition in FSP

If P is a sequential process and Q is a local process, then P;Q represents the sequential

composition such that when P terminates, P;Q becomes the process Q.

Composite Processes

Composite processes are defined using parallel composition, relabeling and hiding.

Parallel Composition in FSP

If P and Q are two processes then (P || Q) represents the concurrent execution of P and Q.

The operator || is the parallel composition operator. Parallel composition yields a process,

which is represented as a state machine in the same way as any other process. The state

machine representing the composition generates all possible interleavings of the traces of

its component processes. Composite process definitions are always preceded by “||” to

distinguish them from primitive process definitions. For example, the process:

ITCH = (scratch->STOP).

has a single trace consisting of the action scratch. The process:

CONVERSE = (think->talk->STOP).

has the single trace think->talk . The composite process:

||CONVERSE_ITCH = (ITCH || CONVERSE).

has the following traces

think->talk->scratch

Page 11|59

think->scratch->talk

scratch->think->talk

The state machine representing the composition is formed by the Cartesian product of its

constituents. [6]

Figure 2.8: LTSA representation of Composition CONVERSE_ITCH.

Modeling interaction - Shared Actions

If processes in a composition have actions in common, these actions are said to be shared.

Concurrent processes that share actions interact with each other for synchronization. A

shared action must be executed at the same time by all the processes that participate in

that shared action while unshared actions may be arbitrarily interleaved. For an example, a

process that manufactures an item and then signals that the item is ready for use by a

shared ready action. A user can only use the item after ready action occurs. Two items

can be made before the first is used which is an undesirable behavior and we do not wish

the MAKER process to get ahead in this way. The solution is to ensure that the user

indicates that the item is used. The used action is shared with the MAKER who now cannot

proceed to manufacture another item until the first is used. The interaction between

MAKER and USER in such a way is an example of a handshake. A handshake is an action

acknowledged by another action. Handshake protocols are widely used to structure

interactions between processes. [6]

MAKER = (make->ready->used->MAKER).

Page 12|59

USER = (ready->use->used->USER).

||MAKER_USER = (MAKER || USER).

Figure 2.9: LTSA representation of Composition MAKER_USER.

Relabeling Actions in FSP

Relabeling functions are applied to processes and change the names of action labels. This is

usually done to ensure that composite processes synchronize on the desired actions.

/{newlabel_1/oldlabel_1,…newlabel_n/oldlabel_n} is the general form of the relabeling

function. For an example, a server process that provides some service and a client process

that invokes the service are described below.

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

Using relabeling we can associate call action of the CLIENT with the request action of

the SERVER and similarly the reply and the wait actions.

||CLIENT_SERVER = (CLIENT || SERVER)

 / {call/request reply/wait}.

The effect of applying the relabeling function can be seen in the state machine as the label

call replaces request in SERVER and reply replaces wait in CLIENT. [6]

Page 13|59

Figure 2.10: LTSA representation of Relabeling in CLIENT_SERVER.

Hiding "\" and "@"

Hiding removes action names from the alphabet of a process and thus makes these

concealed actions "silent". By convention, these silent actions are labeled "tau". The general

form of a hiding expression is \ {set of labels to be hidden}. Sometimes it is more

convenient to state the set of action labels, which are visible and hide all other labels. This

is expressed by @ {set of visible labels}. [6]

2.2.2 Property Processes to verify the System

Safety Properties

Safety properties are specified to LTSA as deterministic primitive processes which contain

no silent (tau) transitions (no hiding). Safety property processes are denoted by the

keyword property. They are composed with a target system to ensure that the specified

property holds for that system. Composing a property process with a set of processes does

not affect their normal operation. If behavior can occur that violates the safety property,

then a transition to the ERROR state results. For example, the following property specifies

that only behavior in which knock occurs before enter is acceptable. [6]

property POLITE = (knock->enter->POLITE).

Page 14|59

Figure 2.11: LTSA representation of Property POLITE.

2.3 Compensating CSP (cCSP)

Compensating CSP (cCSP) is a language defined to model long running business

transactions within the framework of standard CSP process algebra. Processes in cCSP are

modeled in terms of the atomic events they can engage in. The processes are categorized

into standard and compensable processes. [8]

A standard process does not have any compensation. The basic unit of the standard

processes is an atomic event (A). The other operators are the sequential (P;Q), and the

parallel composition (P || Q), the choice operator (P□Q), the interrupt handler (), the

empty process SKIP, raising an interrupt THROW, and yielding to an interrupt YIELD. A

process that is ready to terminate is also willing to yield to an interrupt. In a parallel

composition, throwing an interrupt by one process synchronizes with yielding in another

process. [8]

Compensation is part of a compensable process that is used to compensate a failed

transaction. The sequential composition of compensable processes is defined in such a way

that the compensations of the completed tasks will be accumulated in reverse to the order

of their original composition, whereas compensations from the compensable parallel

processes will be placed in parallel. In order to support failed transaction, compensation

operators are introduced. We use notations, such as, P,Q,.. to identify standard processes,

and PP,QQ,.. to identify compensable processes. The basic way of constructing a

compensable process is through a compensation pair (P ÷ Q), which is constructed from

two standard processes, where P is called the forward behavior that executes during

normal execution, and Q is the associated compensation that is designed to compensate the

effect of P when needed. [8]

Page 15|59

The language provides operators that support sequencing, choice and parallel composition

of processes. SKIPP, THROWW, and YIELDD are the compensable counterpart of the

corresponding standard processes and they are defined by pairing an empty compensation

with them, e.g., SKIPP = SKIP ÷ SKIP. [8]

Table 2.1: cCSP syntax

Standard Processes Compensable Processes
P,Q ::= A (atomic event) PP,QQ ::= P ÷ Q (compensation pair)
P ;Q (sequential composition) PP ;QQ
P □ Q (choice) PP □ QQ
P || Q (parallel composition) PP || QQ
SKIP (normal termination) SKIPP
THROW (throw an interrupt) THROWW
YIELD (yield to an interrupt) YIELDD
 Q (interrupt handler)
[PP] (transaction block)

Page 16|59

CHAPTER 3

Car Broker Service Composition

3.1 Car Broker Web Service

Car Broker Web service is an online service designed for supporting customers to negotiate

car purchases and arranges loans for these. The main web service Broker uses two

separate partner web services: A Supplier to find quote then deliver car to Broker

according to the order; A Lender, named LoanStar to arrange loans for these. Each web

service can operate separately and can be used in other web services. In this model a Buyer

provides a need for a car model to the Broker, Broker receives order from Buyer (the order

contains the details about the car); according to Buyer’s order Broker first uses its business

partner Supplier to find the available quotes for car models. Broker receives the quotes

from Supplier and chooses a suitable quote for Buyer. After that, Broker simultaneously

send Quote to Buyer, Order to Supplier and request Loan to LoanStar to arrange a loan for

the Buyer for the selected quote. The order will be completed without any error if and only

if the Buyer confirms the order, Supplier confirms the delivery and LoanStar approves the

loan. A loan can be refused due to a failure in the loan assessment, a Buyer can reject the

quoted offer and a Supplier may fail to provide proper quote or model. In either case an

interrupt can be raised. It needs to invoke a compensation for the action so that the whole

works never fail for all these negative possibilities. For an example, a negative

acknowledgement is thrown by LoanStar. This negative message will be received by a

compensation process of LoanStar which will compensate all actions performed by

LoanStar and will throw an interrupt to the Main Compensation process. After stage

Supplier, Buyer and Broker will be terminated by yielding an interrupt message

combination. These messages will be received by the compensation processes of Supplier,

Buyer and Broker respectively and will compensate all actions those are already performed

by these processes. The behavior of the Car Broker Web Service is defined by combining

the behavior of Broker, Buyer, Supplier and LoanStar, where the processes synchronize

over their set of actions within a composition and between compositions. It also defined by

how compensations are handled in each case. Before we can start writing the FSP process

definition we have to become familiar with the web services involved in our business

process.

3.1.1 BUYER

In this system at first Buyer gives an order to Broker to purchase a car. In according to the

order Buyer receives a suitable quote from Broker. The Buyer can either accept or reject

Page 17|59

the quote. If the quote satisfied the Buyer, Buyer sends a confirmation message to Broker

or else reject the quote by throwing a message.

Figure 3.1: Architectural view of Buyer

3.1.2 BROKER

After receiving the order from the Buyer the Broker requests the Supplier for available

quotes. Then select a quote from the received quotes. Broker then simultaneously send

quote to Buyer, give an order to the Supplier and requests for loan to the LoanStar. Broker

accepts all the positive acknowledgements from Buyer, Supplier and LoanStar if Buyer

accepts the quote, Supplier is able to provide the requested model and LoanStar approved

the loan then we can say that the order is complete. If any compensation is required to run

for other processes, Main Compensation process will also run the Brokers compensation.

Figure 3.2: Architectural view of Broker Web Service

Page 18|59

3.1.3 SUPPLIER

Supplier is a service that receives a quotation request from Broker in accordance to the

order of a particular car model by Buyer. Getting the request for quotation, Supplier

collects Quotes from all of its associated partners and passes the accumulated quotes to the

Broker. Supplier receives a final order from Broker while Broker selects a suitable quote

for Buyer. If the Supplier is able to manage the desired car model ready to supply, it

acknowledges Broker by a positive reply. Otherwise it throws a failure message.

Figure 3.3: Architectural view of Supplier Web Service

3.1.4 LOANSTAR

LoanStar assumed as a lender web service that offers loans to online Buyers. After a

detailed assessment of the loan LoanStar can either approve the loan or reject the loan. If

the assessment outcome is positive loan request is granted and LoanStar sends a positive

acknowledgement to Broker. Otherwise loan request is canceled.

Figure 3.4: Architectural view of LoanStar Web Service

Page 19|59

Figure 3.5: Architectural view of Car Broker Web Service

Page 20|59

Overall Transaction in Message sequence Chart

Figure 3.6: Overall Transaction in Message sequence Chart

Page 21|59

3.2 Compensation in Car Broker Web Service

3.2.1 Compensation

To give a proper service it needs interaction between services. One service can call another

service and need to deals with error occurs during interaction. If any negative

acknowledgement is thrown by any service it is considered as a fault or error of the system

for which service cannot be continued anymore. That’s why we have to handle errors by

compensating the services. A mechanism is used to handle the errors that can arise in any

stage of communication between services is called compensation. Using the compensation

mechanism all services can reach in their initial state from where they have been

interrupted.

3.2.2 Compensation Mechanism of Car Broker Web Service

In our model while a negative acknowledgement is thrown by a service this message

is received by the compensation process of this service. The reverse actions are performed

to compensate the service from where the interruption occurs. Simultaneously the

compensation process throws an interrupt to the Main Compensation process CMAIN.

CMAIN throws a combination of messages that will be received by the compensation

processes of the respective services attached to the system and runs the compensating

actions in parallel.

In the case of rejection, Buyer will throw a message that will be received by a compensation

process which will compensate Buyer’s activities and will throw an interrupt to the Main

Compensation process to compensate others.

Broker’s compensation process runs in two phases. Compensation process will cancel all

the requests placed by the Broker to other processes in phase two and then reverse all

sequential actions of Broker declared in phase one.

The failure message of the Supplier will be received by a compensation process which will

compensate Supplier’s activities and will throw an interrupt to the Main Compensation

process to compensate others.

Performed activities of LoanStar are compensated by the compensation process of

LoanStar and simultaneously other services will be compensated through Main

Compensation process.

A message sequence chart has been included to how compensation mechanism works in

our system.

Page 22|59

Figure 3.7: Overall Transaction in Message sequence Chart with Compensation

0·---=Cl ~~ ,.. -,--,-- r_-~-_ -._-_, ---,-, .':'"
I..,.. I c. ... k.'.>t .,.k.. C ... J

-:-i_-'", '-I _ L i i : -:---'

~ P=F- 1 1 , ,

T
, ,
•

, , , , , , · , " ... ' = • ,
I :

1
• • • •

, ,

:
~-~

•
•
•

......!. :::

• • • • • · -'
· i • • KAK , a>cI '
• -------1-+--f-ri : ,~

~:r, 1 "'--.
f:: :

r--==-

•
c,: -.J

• • • • •

Page 23|59

CHAPTER 4

Service Composition in FSP

4.1 Coding Representation

In our system we have four major processes which have their own compensation process

and safety property to ensure a good composition. In FSP we modeled the system like that,

Buyer will send an order to Broker in order to purchase a car, Broker will collect quotes for

the requested car model from Supplier and select a quote then send it to Buyer and request

a loan on behalf of Buyer to LoanStar and submit an order for car to Supplier at a time. The

order is completed after getting all positive acknowledgements. When a negative

acknowledgement is thrown by Buyer, LoanStar or Supplier will be received by their

respective compensation process and a message will be sent by the process to main

compensation process to compensate other processes. Here main compensation process

use messaging system to communicate with other compensation processes.

4.2 Modeling the Car Broker Service in FSP

Car Broker Service is divided into four major services. Each service contains its own

general process and its compensation process. Main Compensation Process handles any

kind of anomaly that occurs in the System.

4.2.1 Declaring Original Processes

BUYER

Buyer process consists of a sequence of actions. The process starts the service by giving an

order for a car to Broker. When Buyer receives a quote from Broker named as rcv_qt

action in the process it checks whether the quote is suitable or not. If the quote is suitable

then it gives a positive acknowledgement send_b_ack to Broker or else denies the quote

by throwing a negative acknowledgement send_b_nak.

BUYER = (order->rcv_qt->reply->(send_b_ack->BUYER|send_b_nak-

>thrwb->END)).

Page 24|59

Figure 4.1: LTSA representation of Buyer Process

BROKER

Broker service is a process interacts with other three partner service processes. Broker

process works in two phases. Phase one consists of several sequential actions and Phase

two is the concurrent execution of three parallel processes.

BROKER Phase One

Phase one starts by receiving an order from Buyer labeled as rcv_order. According to

Buyer’s order Broker request for the quotes to the Supplier by rfq_to_supp.

rcv_qt_supp action represents that Broker receives the quotes from Supplier. Broker

finds the best possible quote for the requested car model by Buyer represented by the

action select_qt.

BRK_PHASE1 = (rcv_order->rfq_to_supp->rcv_qt_supp->select_qt-

>END).

Figure 4.2: LTSA representation of BRK_PHASE1 Process

Page 25|59

BROKER Phase Two

After selecting the quote in Phase two, Broker simultaneously send quote to Buyer, order to

Supplier and request loan to LoanStar by using the process REQ. The order will be

completed without any error if and only if Buyer, Supplier and LoanStar all send positive

acknowledgements to Broker. These acknowledgements received in the process RCV and

the respective receiving messages are rcv_buyerack, rcv_suppack,

rcv_loanack. Broker Phase Two is the composition of these two processes REQ and

RCV and the composition is titled as BRK_PHASE2.

REQ1 = (select_qt->send_qt_buyer->reply->END).

REQ2 = (select_qt->order_supp->reply->END).

REQ3 = (select_qt->req_loan->reply->END).

RCV1 = (reply->rcv_buyerack->END).

RCV2 = (reply->rcv_suppack->END).

RCV3 = (reply->rcv_loanack->END).

||REQ = (REQ1||REQ2||REQ3).

||RCV = (RCV1||RCV2||RCV3).

||BRK_PHASE2 = (REQ||RCV).

Page 26|59

Figure 4.3: LTSA representation of BRK_PHASE2 Process

Finally the Broker process is the composition of two phases; BRK_PHASE1, the sequential

part of Broker and BRK_PHASE2, the parallel part of Broker.

||BROKER = (BRK_PHASE1||BRK_PHASE2).

SUPPLIER

Supplier receives a request for quotes from the Broker by rcv_rfq. According to the

request, Supplier sends accumulated quotes to the Broker by send_qt. After selecting the

appropriate quote Broker sends an order for car and that is received by the action labeled

rcv_brk_order at the Suppliers end. If the Supplier able to deliver the order it confirms

Broker by sending an acknowledgement send_s_ack otherwise it rejects the order and

sends a negative acknowledgement send_s_nak.

SUPPLIER = (rcv_rfq->send_qt->rcv_brk_order->reply->(send_s_ack-

>SUPPLIER|send_s_nak->thrws->END)).

Page 27|59

Figure 4.4: LTSA representation of Supplier Process

LOANSTAR

After selecting the quote Broker sends a request to its business partner LoanStar to

arrange a loan for Buyer. This request is received in LoanStar by the action rcv_req.

Loanstar confirms the approval of the loan by sending an acknowledgement send_l_ack.

Loanstar rejects the loan request using send_l_nak if it is not able to arrange the loan for

the Buyer.

LOANSTAR = (rcv_req->reply->(send_l_ack->LOANSTAR|send_l_nak-

>thrwl->END)).

Figure 4.5: LTSA representation of LoanStar Process

Page 28|59

4.2.2 Declaring Compensation Processes

Compensation Process for BUYER

Buyer’s compensation process is completed with two processes. One process is consists of

compensating actions to compensate Buyer and another contains a message which alerts

Main Compensation Process that a negative acknowledgement is thrown from Buyer.

COMP_B = (thrwb->cancel_rcv_qt->cancel_order->END).

MSGB = (thrwb->msgb->END).

Figure 4.6: LTSA representation of COMP_B Process

The compensation process COMP_B consists of reverse actions those were performed by

Buyer before sending a negative acknowledgement. The action thrwb is the

synchronizing shared action for those processes who tries to execute it.

When COMP_B runs, at the same time another process MSGB also run in parallel. MSGB

throws a message msgb which is received by the Main Compensation Process. msgb

indicates that Buyer process is not running anymore; so getting this message Main

Compensation Process will take necessary steps to compensate others.

Compensation Process for BROKER

Broker’s Compensation Process COMP_BRK completed in two phases; one is the

compensation of Phase two of Broker Process then the compensation of Phase one of the

Broker Process. COMP_BRK is composed of two separate processes, BRK_PHASE2_COMP

and BRK_PHASE1_COMP.

||COMP_BRK = (BRK_PHASE2_COMP||BRK_PHASE1_COMP).

Page 29|59

 Figure 4.7: LTSA representation of COMP_BRK Process

Compensation Process of Broker’s Phase Two

CMP_REQ1 = (thrwbrk->wdrw_buyer_qt->reqwdrwn->END).

CMP_REQ2 = (thrwbrk->wdrw_s_order->reqwdrwn->END).

CMP_REQ3 = (thrwbrk->wdrw_l_req->reqwdrwn->END).

||BRK_PHASE2_COMP = (CMP_REQ1||CMP_REQ2||CMP_REQ3).

BRK_PHASE2_COMP is the compensation process of Broker’s parallel part. After getting

an interrupt from Main Compensation Process Broker’s phase two compensation process

withdraws all placed request to its partner processes with the actions wdrw_buyer_qt,

wdrw_s_order and wdrw_l_req. These actions are composed in parallel with the

Page 30|59

separate respective processes CMP_REQ1, CMP_REQ2 and CMP_REQ3 in

BRK_PHASE2_COMP process. reqwdrwn indicates that all requests are successfully

withdrawn.

Figure 4.8: LTSA representation of BRK_PHASE2_COMP Process

Compensation Process of Broker’s Phase One

BRK_PHASE1_COMP = (reqwdrwn->cancel_qt_select-

>cancel_supp_qt_rcv->cancel_rfq_to_supp->cancel_buyer_order-

>END).

Broker’s Phase One Compensation Process BRK_PHASE1_COMP starts after successfully

withdrawing all requests placed by Broker to its partner processes. Process

BRK_PHASE1_COMP consists a sequence of actions that cancels every actions performed

by Broker after receiving an order from Buyer till selecting a quote among various quotes

sent by supplier.

Page 31|59

Figure 4.9: LTSA representation of BRK_PHASE1_COMP Process

Compensation Process for Supplier

Supplier’s Original Compensation process is composed of two processes. One is Supplier’s

compensation process and another is a messaging system alerts the Main Compensation

Process that a negative acknowledgement is thrown from Supplier.

COMP_S = (thrws->cancel_brk_order->cancel_qt->cancel_rfq->END).

MSGS = (thrws->msgs->END).

Figure 4.10: LTSA representation of COMP_S Process

COMP_S, the compensation process of Supplier reverse the actions which are already done

by Supplier before sending a negative acknowledgement. This process is synchronized

through a shared action thrws while Supplier needs to be compensated.

When COMP_S runs, at the same time another process MSGS also run in parallel. MSGS

throws a message msgs which is received by the Main Compensation Process. This

message indicates that Supplier process is not able to run anymore and the compensation

process of supplier is running; after getting this message Main Compensation Process will

take necessary steps to compensate others.

Page 32|59

Compensation Process for LoanStar

Process COMP_L and MSGL are used to compensate LoanStar’s activities. While COMP_L

runs, simultaneously a process MSGL runs.

COMP_L = (thrwl->cancel_loan_req->END).

MSGL = (thrwl->msgl->END).

Figure 4.11: LTSA representation of COMP_L Process

COMP_L compensates LoanStar’s actions those took place before sending a negative

acknowledgement. A shared action thrwl is used to synchronize with those processes

that are willing to execute the compensation process of LoanStar.

MSGL throws a message msgl which is received by the Main Compensation Process.

msgl indicates that LoanStar rejects the loan request. So Main Compensation Process has

to take necessary steps to compensate others.

4.2.3 Main Compensation Process

Main Compensation process is a messaging system. When a negative acknowledgement is

given by any partner processes of Broker, a message is received by the Main Compensation

Process. From the message, Main Compensation Process identifies that from which process

the interrupt is thrown. On the basis of the sent message a combination of messages is

generated by the Main Compensation Process to compensate other processes except the

process from where the message was received.

Page 33|59

CMAIN = (msgb->COMP_EXCPT_BUYER|msgs->COMP_EXCPT_SUPP|msgl-

>COMP_EXCPT_LOAN),

COMP_EXCPT_BUYER = FROM_BUYER;END,

COMP_EXCPT_SUPP = FROM_SUPP;END,

COMP_EXCPT_LOAN = FROM_LOAN;END.

Figure 4.12: LTSA representation of CMAIN Process

Message Composition to Compensate Processes

When a message msgb is thrown from the compensation process of Buyer it is

synchronized with a process of Main Compensation process CMAIN, named as

FROM_BUYER. FROM_BUYER consisting thrwbrk, thrws and thrwl actions that

synchronizes with the compensation process of Broker, Supplier and LoanStar respectively.

Page 34|59

BUYERMSG_TO_COMP_BRK = (thrwbrk->END).

BUYERMSG_TO_COMP_S = (thrws->END).

BUYERMSG_TO_COMP_L = (thrwl->END).

||FROM_BUYER =

(BUYERMSG_TO_COMP_BRK||BUYERMSG_TO_COMP_S||BUYERMSG_TO_COMP_L).

msgs is thrown from the compensation process of Supplier. This synchronized with the

process FROM_SUPP which is a part of the Main Compensation Process. FROM_SUPP is a

parallel composition of thrwb, thrwbrk and thrwl actions that synchronizes with the

compensation process of Buyer, Broker and LoanStar respectively.

SUPPMSG_TO_COMP_B = (thrwb->END).

SUPPMSG_TO_COMP_BRK = (thrwbrk->END).

SUPPMSG_TO_COMP_L = (thrwl->END).

||FROM_SUPP =

(SUPPMSG_TO_COMP_B||SUPPMSG_TO_COMP_BRK||SUPPMSG_TO_COMP_L).

After receiving msgl from the compensation process of LoanStar, Main Compensation

Process throws a combination of messages thrwb, thrwbrk and thrws using the

process FROM_LOAN to the compensation process of Buyer, Broker and Supplier

respectively in order to compensate them.

LOANMSG_TO_COMP_B = (thrwb->END).

LOANMSG_TO_COMP_BRK = (thrwbrk->END).

LOANMSG_TO_COMP_S = (thrws->END).

||FROM_LOAN =

(LOANMSG_TO_COMP_B||LOANMSG_TO_COMP_BRK||LOANMSG_TO_COMP_S).

Page 35|59

4.2.4 Final Compositions

||CARBROKERSERVICE = (

 BUYER||BROKER||SUPPLIER||LOANSTAR||

 MSGB||MSGS||MSGL||CMAIN||

 COMP_B||COMP_BRK||COMP_S||COMP_L||

 SAFE_COMP_B||SAFE_COMP_S||SAFE_COMP_L||

 SAFE_MSG_BRK||SAFE_MSG_B||SAFE_MSG_S||SAFE_MSG_L|

 SAFE_SYSTEM||SAFE_REQ1||SAFE_REQ2||SAFE_REQ3

)

 /{

 rcv_order/order,

 rcv_rfq/rfq_to_supp,

 rcv_qt_supp/send_qt,

 rcv_qt/send_qt_buyer,

 rcv_req/req_loan,

 rcv_brk_order/order_supp,

 rcv_buyerack/send_b_ack,

 rcv_loanack/send_l_ack,

 rcv_suppack/send_s_ack

 }.

CARBROKERSERVICE Process is the parallel composition of all engaged processes to the

system with all safety properties (that will be discussed in Chap. 5). All major services,

their compensation processes, all message throwing processes, CMAIN the main

compensation process all together composed in CARBROKERSERVICE. All the services

have been synchronized with each other through the relabeling functions.

Page 36|59

CHAPTER 5

Composition Verification

5.1 Property Processes for Verification

If a safety property is composed in parallel with a process and no trace violation is

generated after the composition we can ensure that the safety property verifies that

process. If any trace violation occurs we can say that the safety property could not verify

the process.

5.2 Property Processes to Verify Compensation

5.2.1 Verifying Buyer Compensation

property SAFE_COMP_B = (send_b_nak->cancel_rcv_qt->SAFE_COMP_B).

Figure 5.1: LTSA representation of safety property SAFE_COMP_B

The property process SAFE_COMP_B ensures that when a negative acknowledgement is

thrown from Buyer it actually synchronizes with the compensation process of Buyer. The

property is described with two actions send_b_nak and cancel_rcv_qt.

send_b_nak is an action of Buyer process, when a negative acknowledgement is thrown

and cancel_rcv_qt is the first action of Buyer’s compensation process after the

synchronizing shared action thrwb.

When the property process is composed with Buyer and its compensation process COMP_B

in BSAFE, if the two actions of our property process found in a sequential manner and

Page 37|59

does not show any trace violations in the resulting LTS, we can say that they have been

synchronized with each other successfully and satisfied the condition of our property

process, otherwise not.

||BSAFE = (BUYER||COMP_B||SAFE_COMP_B).

Figure 5.2: LTSA representation of BSAFE process

5.2.2 Verifying Supplier Compensation

property SAFE_COMP_S = (send_s_nak->cancel_brk_order-

>SAFE_COMP_S).

Figure 5.3: LTSA representation of safety property SAFE_COMP_S

Page 38|59

The property process SAFE_COMP_S is described with two actions send_s_nak and

cancel_brk_order. send_s_nak is an action of Supplier process, when a negative

acknowledgement is thrown and cancel_brk_order is the first action of Supplier’s

compensation process after the synchronizing shared action thrws.

When the property process is composed with Supplier and its compensation process

COMP_S in SSAFE, the above mentioned two actions of our property process remain in

sequential manner in the resulting LTS and does not show any trace violations we can say

that they have been synchronized with each other successfully and satisfied the condition

of our property process, otherwise not.

||SSAFE=(SUPPLIER||COMP_S||SAFE_COMP_S).

Figure 5.4: LTSA representation of SSAFE process

5.2.3 Verifying LoanStar Compensation

property SAFE_COMP_L = (send_l_nak->cancel_loan_req-

>SAFE_COMP_L).

Figure 5.5: LTSA representation of safety property SAFE_COMP_L

Page 39|59

Using the property process SAFE_COMP_L we tried to ensure that when a negative

acknowledgement is thrown from LoanStar using send_l_nak it actually received by the

compensation process of LoanStar and then start to execute the compensation action

cancel_loan_req to compensate LoanStar.

After composing the property process with LoanStar and its compensation process

COMP_L in LSAFE we can observe the resulting LTS. If there is no trace violations is

observed we can say that they have been synchronized with each other successfully and

satisfied the condition of our property process, otherwise not.

||LSAFE = (LOANSTAR||COMP_L||SAFE_COMP_L).

Figure 5.6: LTSA representation of LSAFE process

5.3 Verifying Main Compensation Mechanism

property SAFE_MSG_BRK = (msgb->thrwbrk->SAFE_MSG_BRK

 |msgl->thrwbrk->SAFE_MSG_BRK|msgs-

>thrwbrk->SAFE_MSG_BRK).

property SAFE_MSG_B = (msgs->thrwb->SAFE_MSG_B|msgl->thrwb-

>SAFE_MSG_B).

property SAFE_MSG_S = (msgb->thrws->SAFE_MSG_S|msgl->thrws-

>SAFE_MSG_S).

property SAFE_MSG_L = (msgb->thrwl->SAFE_MSG_L|msgs->thrwl-

>SAFE_MSG_L).

Page 40|59

To verify the main compensation mechanism we defined four different property processes

where SAFE_MSG_BRK is defined to confirm that when a negative acknowledgement is

received from Buyer, Supplier or LoanStar, CMAIN will surely run the compensation

process of Broker by throwing the message thrwbrk. Here thrwbrk is the synchronizing

shared action of the compensation process of Broker.

Figure 5.7: LTSA representation of safety property SAFE_MSG_BRK

SAFE_MSG_B is defined to confirm that CMAIN will surely run the compensation process

of Buyer by throwing the message thrwb when a negative acknowledgement is received

from Supplier or LoanStar. Here thrwb is the synchronizing shared action of the

compensation process of Buyer.

Page 41|59

Figure 5.8: LTSA representation of safety property SAFE_MSG_B

SAFE_MSG_S ensures that when a negative acknowledgement is received from Buyer or

LoanStar, CMAIN will surely run the compensation process of Supplier by throwing the

message thrws.

Figure 5.9: LTSA representation of safety property SAFE_MSG_S

Page 42|59

SAFE_MSG_L is defined to ensure that when a negative acknowledgement is received

from Buyer or Supplier, CMAIN will synchronize with the compensation process of

LoanStar throwing the message thrwl.

Figure 5.10: LTSA representation of safety property SAFE_MSG_L

msgb, msgs and msgl are used by CMAIN to receive a negative acknowledgement from

Buyer, Supplier and LoanStar respectively.

||CMAIN_CHECK=(CMAIN||COMP_B||COMP_BRK||COMP_S||COMP_L||SAFE_MSG

_BRK||SAFE_MSG_B||SAFE_MSG_S||SAFE_MSG_L).

We can be sure that CMAIN must execute all the compensation processes engaged in the

system if and only if there is no trace violation when CMAIN is composed in parallel with

the property processes named SAFE_MSG_BRK, SAFE_MSG_B, SAFE_MSG_S,

SAFE_MSG_L and all the compensation processes in CMAIN_CHECK, otherwise it will

violates the main compensation mechanism properties.

Page 43|59

5.4 Verifying System Composition

property SAFE_SYSTEM = (rcv_order->rcv_rfq->rcv_qt_supp-

>select_qt->SAFE_SYSTEM).

Figure 5.11: LTSA representation of safety property SAFE_SYSTEM

The property process SAFE_SYSTEM is defined to ensure that Buyer, Broker and Supplier

processes synchronized correctly in their desired synchronizing points in the system up to

quote selection.

property SAFE_REQ1 = (select_qt->rcv_qt->SAFE_REQ1).

property SAFE_REQ2 = (select_qt->rcv_brk_order->SAFE_REQ2).

property SAFE_REQ3 = (select_qt->rcv_req->SAFE_REQ3).

Page 44|59

Figure 5.12: LTSA representation of safety property SAFE_REQ1, SAFE_REQ2,
SAFE_REQ3

After selecting quote, a quote is sent to Buyer, a loan request is placed to LoanStar and an

order is placed to Supplier simultaneously. These requests are received by those three

service processes using rcv_qt, rcv_brk_order, rcv_req actions. SAFE_REQ1,

SAFE_REQ2 and SAFE_REQ3, these three safety properties ensures that the requests

placed in parallel to Buyer, Supplier and LoanStar by Broker is successfully received.

If the property SAFE_SYSTEM and SAFE_REQ1, SAFE_REQ2, SAFE_REQ3 are composed

in parallel with the processes BUYER, BROKER, SUPPLIER and LOANSTAR in

MAINSYSTEM_CHECK and the traces of MAINSYSTEM_CHECK does not show any violation

in LTS diagram we can say that our system is verified with the written SAFE_SYSTEM

property process which ensures that the system has been synchronized successfully. On

the other hand we can also say that the requests are made by the Broker are successfully

received by its partner services. If there any violation occurs in the traces we can say that

system synchronization might not ok or else there is a fault in the message passing system.

As Including LOANSTAR in the composition of MAINSYSTEM_CHECK, it generates too

many states. So, by omitting LOANSTAR from the composition we can generate the LTSA

representation of the process MAINSYSTEM_CHECK.

 ||MAINSYSTEM_CHECK =

(BUYER||BROKER||SUPPLIER||LOANSTAR||SAFE_SYSTEM||SAFE_REQ1||SAFE

_REQ2||SAFE_REQ3)

 /{

 rcv_order/order,

Page 45|59

 rcv_rfq/rfq_to_supp,

 rcv_qt_supp/send_qt,

 rcv_qt/send_qt_buyer,

 rcv_req/req_loan,

 rcv_brk_order/order_supp,

 rcv_buyerack/send_b_ack,

 rcv_loanack/send_l_ack,

 rcv_suppack/send_s_ack

}.

Figure 5.13: LTSA representation of MAINSYSTEM_CHECK

Page 46|59

CHAPTER 6

Comparison With cCSP

6.1 Introduction

The languages cCSP and FSP provides operators that support sequencing, choice, parallel

composition of processes, compensation operators in order to support failed transaction

and so on. In some cases the way notations are used in cCSP are similar they are in FSP but

most of the cases they are used in a different way. In this chapter comparison of using

notations in cCSP and FSP are discussed in brief.

6.2 Sequential Composition

Sequential composition is done in the same way as cCSP and FSP. If two processes P and Q

are composed sequentially then process Q starts just after the execution of the actions of

the process P. Sequential composition in both FSP and cCSP are denoted by P;Q.

A sequential composition in FSP takes the form:

P = (act1->act2->END).

Q = (act3->END).

SEQUENCE=P;Q;END.

Figure 6.1: LTSA representation of SEQUENCE

Where P and Q are sequential processes and END is a local process.

A sequential composition in cCSP takes the form:

 ()

Supplier gets an order of an item of quantity a then process the order.

Page 47|59

6.3 Choice

In a process choice operator is involved where a process is initially engages in more than

one action but executes either of the actions. In cCSP “□”, in FSP “|” operator represented

as a choice operator.

In FSP choices are of two types: Deterministic and Non-deterministic. In deterministic

choice the process initially might engages with two or more different actions leading to

different succeeding behaviors. On the other hand in non-deterministic choice the process

initially might engages with the same action leading to different succeeding behaviors.

Deterministic Choice in FSP:

The example describes the behavior of a dispensing machine which dispenses coffee if the

red button is pressed and tea if the blue button is pressed.

DRINKS = (red->coffee->DRINKS | blue->tea->DRINKS).

Non-Deterministic Choice in FSP:

COIN = (toss->heads->COIN | toss->tails->COIN).

Choice in cCSP:

 () ()

 Here, after receiving the quote reply might be Accept or Reject. [9]

6.4 Parallel Composition

A parallel operator is used to compose two or more processes which will execute at the

same time in parallel coordinating with each other.

In cCSP (P || Q) describes the parallel composition of the processes P and Q. It allows all the

possible interleaving of actions of two processes. In a parallel composition, throwing an

interrupt by one process synchronizes with yielding in another process. Parallel operator

synchronizes and interleave over observable events. The process

() represents the parallel composition of processes P and Q, synchronizing over the

set of events X, events not in X can occur independently.

In cCSP representation:

 ()

 ((() ()) ())

Page 48|59

After selecting a quote Broker send order to supplier, place a request to LoanStar and Send

Quote to Buyer simultaneously. That is represented here as the parallel composition of

Sendorder(c), Loan(a) and SendQuote(c) [2, 9]

Synchronizing over the events from the SET B:

 , -

 * +

In FSP (P || Q) describes the concurrent execution of P and Q. In concurrent processes same

actions are considered as shared. Shared actions interact with each other for

synchronizations. In a parallel composition if there is no shared action between processes

the composition will generates all possible sequence of actions. To ensure that the

composite processes are synchronized on their desired actions in FSP, relabeling functions

are used in parallel compositions.

In FSP representation:

Without relabeling

ITCH = (scratch->STOP).

CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

With relabeling

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

||CLIENT_SERVER = (CLIENT || SERVER)

 / {call/request reply/wait}.

Page 49|59

6.5 Compensation Pair

Compensation is part of a compensable process that is used to compensate a failed

transaction. The compensations are accumulated during the execution of the processes.

The compensations are defined in such a way that when an interrupt occurs at any stage of

the transaction, the appropriate compensations are executed for the actions that already

did take place.

In cCSP the basic way of constructing a compensable process is through a compensation

pair (P÷Q), which is constructed from two standard processes, where P is called the

forward behavior that executes during normal execution, and Q is called the associated

compensation that is designed to compensate the effect of P when the forward behavior of

P throws an interrupt. [2, 9]

In FSP compensation process and the main process are two separate processes. The main

process and its compensation process are composed in parallel. If any interrupt occurs in

the main process the process throw a message, that message is received by the

compensation process with the collaboration of a shared action. Thus both processes

synchronize and the compensation process runs the compensating actions of those actions

that have already took place by the main process. Here P is the main process also called

forward behavior and Q is its corresponding compensation process, contains the reverse

actions done by P. P_Q is the parallel composition of the main process P with its

compensation process Q that resembles to the compensation pair (P÷Q) as referred in

cCSP.

P = (act1->(ack->P|nak->throw->END)).

Q = (throw->cancel_act1->END).

||P_Q = (P||Q).

Figure 6.2: LTSA representation of the compensation process P_Q.

Page 50|59

Table 6.1: Comparison between cCSP and FSP

Syntax

cCSP FSP

Sequential Composition of
two process(P and Q)

 P= (action1->END).
Q= (action2->END).
SEQUENCE=P;Q ;END.

Choice Deterministic Choice:
(x->P| y->Q)
Non-Deterministic Choice:
(x->P| x->Q)

Parallel Composition
(without relabeling "/")

 P= (a ->b -> END).
Q = (c-> END).
||SYS = (P || Q).

Parallel Composition
(with relabeling "/")

 P= (a ->b ->e->P).
Q = (c->d->Q).

||SYS = (P || Q)/ {c/b, e/d}.

Compensation Pair P=(act1->(ack->P|nak->throw->END)).
Q = (throw->cancel_act1->END).
||P_Q = (P||Q).

Page 51|59

CHAPTER 7

Conclusion

7.1 Summary

We have analyzed about web services and its composition. We have modeled the Car

Broker Web Service by composing several web services to create a composite web service

in a choreographic manner. In order to deal with transaction errors we included

compensation mechanism in our system. We have used FSP notations to model and verify

our desired system. We have created a comparison table of cCSP and FSP to visualize the

similarities and variations of notations to describe a system.

7.2 Future Work

Our future plan is to add some other property processes in the system and observing the

impacts on our verification mechanism. We also want to model and verify service

orchestration with another system including compensation in a similar manner that we

have followed in this project.

Page 52|59

Appendix A

A.1 Buyer Web Service

BUYER = (order->rcv_qt->reply->(send_b_ack->BUYER|send_b_nak-

>thrwb->END)).

/**Buyer Compensation Process**/

COMP_B = (thrwb->cancel_rcv_qt->cancel_order->END).

MSGB = (thrwb->msgb->END).

A.2 Broker Web Service

/**Start of BROKER Section**/

BRK_PHASE1 = (rcv_order->rfq_to_supp->rcv_qt_supp->select_qt-

>END).

REQ1 = (select_qt->send_qt_buyer->reply->END).

REQ2 = (select_qt->order_supp->reply->END).

REQ3 = (select_qt->req_loan->reply->END).

RCV1 = (reply->rcv_buyerack->END).

RCV2 = (reply->rcv_suppack->END).

RCV3 = (reply->rcv_loanack->END).

||REQ=(REQ1||REQ2||REQ3).

Page 53|59

||RCV=(RCV1||RCV2||RCV3).

||BRK_PHASE2=(REQ||RCV).

||BROKER =(BRK_PHASE1||BRK_PHASE2).

/**END of BROKER Section**/

/**Broker Compensation Process**/

CMP_REQ1 = (thrwbrk->wdrw_buyer_qt->reqwdrwn->END).

CMP_REQ2 = (thrwbrk->wdrw_s_order->reqwdrwn->END).

CMP_REQ3 = (thrwbrk->wdrw_l_req->reqwdrwn->END).

||BRK_PHASE2_COMP = (CMP_REQ1||CMP_REQ2||CMP_REQ3).

BRK_PHASE1_COMP = (reqwdrwn->cancel_qt_select-

>cancel_supp_qt_rcv->cancel_rfq_to_supp->cancel_buyer_order-

>END).

||COMP_BRK = (BRK_PHASE2_COMP||BRK_PHASE1_COMP).

/**end of Broker Compensation Process**/

A.3 Supplier Web Service

SUPPLIER = (rcv_rfq->send_qt->rcv_brk_order->reply->(send_s_ack-

>SUPPLIER|send_s_nak->thrws->END)).

/**Supplier Compensation Process**/

COMP_S = (thrws->cancel_brk_order->cancel_qt->cancel_rfq->END).

MSGS = (thrws->msgs->END).

Page 54|59

A.4 LoanStar Web Service

LOANSTAR = (rcv_req->reply->(send_l_ack->LOANSTAR|send_l_nak-

>thrwl->END)).

/**LoanStar Compensation Process**/

COMP_L = (thrwl->cancel_loan_req->END).

MSGL = (thrwl->msgl->END).

A.5 Main Compensation Process

/**Throwing messages to compensate other processes except

Buyer**/

BUYERMSG_TO_COMP_BRK = (thrwbrk->END).

BUYERMSG_TO_COMP_S = (thrws->END).

BUYERMSG_TO_COMP_L = (thrwl->END).

||FROM_BUYER =

(BUYERMSG_TO_COMP_BRK||BUYERMSG_TO_COMP_S||BUYERMSG_TO_COMP_L).

/**Throwing messages to compensate other processes except

Supplier**/

SUPPMSG_TO_COMP_B = (thrwb->END).

SUPPMSG_TO_COMP_BRK = (thrwbrk->END).

SUPPMSG_TO_COMP_L = (thrwl->END).

||FROM_SUPP =

(SUPPMSG_TO_COMP_B||SUPPMSG_TO_COMP_BRK||SUPPMSG_TO_COMP_L).

Page 55|59

/**Throwing messages to compensate other processes except

LoanStar**/

LOANMSG_TO_COMP_B = (thrwb->END).

LOANMSG_TO_COMP_BRK = (thrwbrk->END).

LOANMSG_TO_COMP_S = (thrws->END).

||FROM_LOAN =

(LOANMSG_TO_COMP_B||LOANMSG_TO_COMP_BRK||LOANMSG_TO_COMP_S).

/**Main Compensation Process**/

CMAIN = (msgb->COMP_EXCPT_BUYER|msgs->COMP_EXCPT_SUPP|msgl-

>COMP_EXCPT_LOAN),

 COMP_EXCPT_BUYER = FROM_BUYER;END,

 COMP_EXCPT_SUPP = FROM_SUPP;END,

 COMP_EXCPT_LOAN = FROM_LOAN;END.

/**End of Main Compensation Process**/

A.6 Property Processes

property SAFE_COMP_B = (send_b_nak->cancel_rcv_qt->SAFE_COMP_B).

||BSAFE=(BUYER||COMP_B||SAFE_COMP_B).

property SAFE_COMP_S = (send_s_nak->cancel_brk_order-

>SAFE_COMP_S).

||SSAFE=(SUPPLIER||COMP_S||SAFE_COMP_S).

Page 56|59

property SAFE_COMP_L = (send_l_nak->cancel_loan_req-

>SAFE_COMP_L).

||LSAFE=(LOANSTAR||COMP_L||SAFE_COMP_L).

property SAFE_MSG_BRK = (msgb->thrwbrk->reqwdrwn-

>cancel_buyer_order->SAFE_MSG_BRK

 |msgl->thrwbrk->reqwdrwn-

>cancel_buyer_order->SAFE_MSG_BRK

 |msgs->thrwbrk->reqwdrwn-

>cancel_buyer_order->SAFE_MSG_BRK).

property SAFE_MSG_B = (msgs->thrwb->cancel_order-

>SAFE_MSG_B|msgl->thrwb->cancel_order->SAFE_MSG_B).

property SAFE_MSG_S = (msgb->thrws->cancel_rfq->SAFE_MSG_S|msgl-

>thrws->cancel_rfq->SAFE_MSG_S).

property SAFE_MSG_L = (msgb->thrwl->cancel_loan_req-

>SAFE_MSG_L|msgs->thrwl->cancel_loan_req->SAFE_MSG_L).

||CMAIN_CHECK=(CMAIN||COMP_B||COMP_BRK||COMP_S||COMP_L||SAFE_MSG

_BRK||SAFE_MSG_B||SAFE_MSG_S||SAFE_MSG_L).

property SAFE_SYSTEM = (rcv_order->rcv_rfq->rcv_qt_supp-

>select_qt->SAFE_SYSTEM).

property SAFE_REQ1 = (select_qt->rcv_qt->SAFE_REQ1).

property SAFE_REQ2 = (select_qt->rcv_brk_order->SAFE_REQ2).

property SAFE_REQ3 = (select_qt->rcv_req->SAFE_REQ3).

Page 57|59

||MAINSYSTEM_CHECK =

(BUYER||BROKER||SUPPLIER||LOANSTAR||SAFE_SYSTEM||SAFE_REQ1||SAFE

_REQ2||SAFE_REQ3)

 /{

 rcv_order/order,

 rcv_rfq/rfq_to_supp,

 rcv_qt_supp/send_qt,

 rcv_qt/send_qt_buyer,

 rcv_req/req_loan,

 rcv_brk_order/order_supp,

 rcv_buyerack/send_b_ack,

 rcv_loanack/send_l_ack,

 rcv_suppack/send_s_ack

 }.

Page 58|59

A.7 Car Broker Web Service

||CARBROKERSERVICE = (

 BUYER||BROKER||SUPPLIER||LOANSTAR||

 MSGB||MSGS||MSGL||CMAIN||

 COMP_B||COMP_BRK||COMP_S||COMP_L||

 SAFE_COMP_B||SAFE_COMP_S||SAFE_COMP_L||

 SAFE_MSG_BRK||SAFE_MSG_B||SAFE_MSG_S||SAFE_MSG_L||

 SAFE_SYSTEM||SAFE_REQ1||SAFE_REQ2||SAFE_REQ3

)

 /{

 rcv_order/order,

 rcv_rfq/rfq_to_supp,

 rcv_qt_supp/send_qt,

 rcv_qt/send_qt_buyer,

 rcv_req/req_loan,

 rcv_brk_order/order_supp,

 rcv_buyerack/send_b_ack,

 rcv_loanack/send_l_ack,

 rcv_suppack/send_s_ack

 }.

Page 59|59

References

[1] Florian Daniel, Barbara Pernici, Politecnico deo Milano, Italy, “Web Service

Orchestration and Choreography: Enabling Business Processes on the Web”, Chapter XII,

January 2006.

[2] Shamim Ripon, Mohammad Salah Uddin and Aoyan Barua, “Web Service composition –

BPEL vs cCSP Process Algebra”, Department of Computer Science and Engineering, East West

University, Dhaka, Bangladesh.

[3] Abdaladhem Albreshne, Patrik Fuhrer, Jacques Pasquier, “Web Services Orchestration

and Composition Case Study of Web services Composition”, September 2009.

[4] B. Margolis with J. Sharpe, “Based on SOA for Business Developer, Concepts, BPEL, and

SCA”, McPress, Lewisville, TX, 2007.

[5] Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer, “Model-based Verification of

Web Service Compositions”, Department of Computing, Imperial College London.

[6] Jeff Magee, Jeff Kramer, “Concurrency: State Models and Java Programs”, Text Book, 2nd

Edition, John Wiley & Sons, Ltd, 2006.

[7] Mark Austin, John Johnson, “Compositional Behavior Modeling and Formal Validation of

Canal System Operations with Finite State Automata”, ISR Technical report 2011-04, The

Institute for Systems Research.

[8] Shamim H. Ripon, Department of Computing Science, University of Glasgow, UK, Michael

Butler, School of Electronics and Computer Science, University of Southampton, UK,

“Formalizing cCSP Synchronous Semantics in PVS”.

[9] Shamim H. Ripon, Department of Computing Science, University of Glasgow, UK, “Process

Algebraic Support for Web Service Composition”.

