
 

 

 
 

A New Sorting Algorithm Based on Interpolation 

Merging and It’s Parallel Implementation 

By 

Tarun Das 

ID:2012-1-60-005 

 

Supervised By 

Dr. Md. Shamim Akhter 

Assistant Professor 

Department of Computer Science and Engineering 

East West University 

 

A Project Submitted in Partial Fulfillment of the Requirements for the 
Degree of Bachelors of Science in Computer Science and Engineering  

to the 
 

 
 

Department of Computer Science and Engineering 

East West University 

Dhaka, Bangladesh 



 

 

ii 
 

Abstract 

 

We present a new modified merge sort algorithm (invented by John von Newmann in 1945) 

based on interpolation merging technique. Known to date, simple binary merging is the best 

general purpose merging algorithm. However, interpolation merging requires substantially 

fewer comparisons and increases the performance of modified merge sort algorithm. Results 

from a computer implementation of the new sorting algorithm is given and compared with 

merge sort implementation based on tape merging and binary merging algorithms. In addition, 

the parallel version of the proposed algorithm is implemented with openMP and pthreads 

frameworks.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iii 
 

Declaration 

 

We hereby declare that, this project was done under CSE497 and has not been submitted 

elsewhere for requirement of any degree or diploma or for any purpose except for publication. 

 

 

 

 

 

_______________ 

Tarun Das 

ID: 2012-1-60-005 

Department of Computer Science and Engineering  

East West University 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iv 
 

Letter of Acceptance 

 

I hereby declare that this thesis is from the student’s own work and best effort of mine, and all 

other source of information used have been acknowledged. This thesis has been submitted with 

my approval. 

 

 

 

 

 

___________________________ 

Dr. Md. Shamim Akhter        Supervisor 

Assistant Professor 

Department of Computer Science and Engineering  

East West University 

 

 

 

 

 

 

_______________________ 

Dr. Shamim Hasnat Ripon       Chairperson 

Chairperson  & Associate Professor 

Department of Computer Science and Engineering  

East West University 

 

 

 

 

 

 



 

 

v 
 

Acknowledgement 

 

First of all, I would like to thank almighty God for give me the strength & proper knowledge to 

complete my thesis work.   

I would like to express my deep sense of gratitude and sincere thanks to my honorable 

supervisor Dr. Md. Shamim Akhter, Assistant Professor, Department of Computer Science and 

Engineering, East West University, Aftabnagar, Dhaka, Bangladesh for his kind guidance, 

sharing knowledge and constant inspiration throughout this thesis work.   

My sincere gratefulness for the faculty of Computer Science and Engineering whose friendly 

attitude and enthusiastic support that has given me for four years. 

I am very grateful for the motivation and stimulation from my friends and seniors. 

Finally my most heartfelt gratitude goes to my beloved parents and brother for their endless 

support, continuous inspiration, great contribution and perfect guidance from the beginning to 

the end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vi 
 

Table of Contents 

Abstract          II 

Declaration          III 

Letter of Acceptance         IV 

Acknowledgement         V 

List of Figures         VIII-X 

List of Tables          XI 

 

Chapter 1:   

Introduction          1 

1.1 Objective of the Research       1  

1.2 Methodology of Research       1 

1.3 Results of Research        1 

 

Chapter 2:  

Background study         2-8 

2.1 Measure of Disorderness       2-4 

2.1.1 Natural Order        2-3 

2.1.2 Ordering Complexity       4 

2.2 Merging Schemes        4-6 

 2.2.1 Tape Merge        4 

 2.2.2 Simple Binary Merge       5 

 2.2.3 The Generalized Binary Algorithm     5-6 

2.3 Parallel Tools         6-8 

2.3.1 Thread         6 

 2.3.2 OpenMP        6-7 

 2.3.3 Pthread        7-8 

 

Chapter 3:  

Related works         9-10 

 

 

 



 

 

vii 
 

Chapter 4:  

Materials and Methods        11-33 

4.1 Serial Implementation        11-20 

 4.1.1 Binary Search based Sorting Algorithm Implementation 1  11-13 

 4.1.2 Binary Search based Sorting Algorithm Implementation 2  13-14 

 4.1.3  Interpolation Search based Sorting Algorithm   15-20 

4.2 Parallel Implementation       20-33 

4.2.1 Interpolation Search based Sorting Algorithm with openMP  20-24 

 4.2.2 Binary Search based Sorting Algorithm with openMP  25-27 

 4.2.3 Interpolation Search based Sorting Algorithm with Two Threads 28-32 

 4.2.4 Binary Search based Sorting Algorithm with Two Threads  32 

 4.2.5 Interpolation Search based Sorting Algorithm with Multi-threads 32-33 

 4.2.6 Binary Search based Sorting Algorithm with Multi-threads  33 

 

Chapter 5: 

Experimental results and Analysis       34-35 

5.1 Results of serial implementation      34-35 

5.2 Results of parallel implementation      35 

 

Chapter 6:  

Conclusion and Future Work       36 

6.1 Conclusion         36 

6.2 Future work         36 

 

References          37 

 

 

 
 
 

 

 

 

 

 

 

 



 

 

viii 
 

List of Figures 

 

Figure 2.1: Zig-Zag diagram for natural disorder data set    2 

Figure 2.2: Zig-zag diagram for sorted data in natural order    2 

Figure 2.3: Revised Zig-Zag diagram for natural disorder data set.   3 

Figure 2.4: Zig-zag diagram after buffering.      3 

Figure 2.5: Example of OpenMP       7 

Figure 4.1: Merging Array for Implementation 1     11 

Figure 4.2: Step 1 of Implementation 1      11 

Figure 4.3: Step 2 of Implementation 1      12 

Figure 4.4: Step 3 of Implementation 1      12 

Figure 4.5: Step 4 of Implementation 1      12 

Figure 4.6: Step 5 of Implementation 1      13 

Figure 4.7: Merging Array for Implementation 2     13 

Figure 4.8: Step 1 of Implementation 2      14 

Figure 4.9: Step 2 of Implementation 2      14 

Figure 4.10: Step 3 of Implementation 2      14 

Figure 4.11: Create Buffer of Unsorted Data for Serial Implementation  15 

Figure 4.12:  First two Buffer for Serial Implementation    16 

Figure 4.13: Step 1 of Serial Implementation     16 

Figure 4.14: Step 2 of Serial Implementation     17 

Figure 4.15: Step 3 of Serial Implementation     17 

Figure 4.16: Step 4 of Serial Implementation     18 



 

 

ix 
 

Figure 4.17: Step 5 of Serial Implementation     18 

Figure 4.18: Last Two buffer for Serial Implementation    18 

Figure 4.19: Step 6 of Serial Implementation     19 

Figure 4.20: Step 7 of Serial Implementation     19 

Figure 4.21: Step 8 of Serial Implementation     19 

Figure 4.22: Final Sorted Array of Serial Implementation    20 

Figure 4.23: Create Buffer for OpenMP Implementation    21 

Figure 4.24: First Two Buffer for OpenMP Implementation   21 

Figure 4.25: Searching Mechanism using Interpolation Search Ex. 1.  22 

Figure 4.26: Searching Mechanism using Interpolation Search Ex. 2.  22 

Figure 4.27: Step 1 of OpenMP Implementation using Interpolation Search 22 

Figure 4.28: Step 2 of OpenMP Implementation using Interpolation Search 23 

Figure 4.29: Step 3 of OpenMP Implementation using Interpolation Search 23 

Figure 4.30:  Step 4 of OpenMP Implementation using Interpolation Search 23 

Figure 4.31: Step 5 of OpenMP Implementation using Interpolation Search 24 

Figure 4.32: Step 6 of OpenMP Implementation using Interpolation Search 24 

Figure 4.33: Final Sorted Array of openMP Implementation using  

          Interpolation Search       24 

Figure 4.34: Array for Merging       25 

Figure 4.35: Searching Mechanism using Binary Search.    25 

Figure 4.36: Step 1 of OpenMP Implementation using Binary Search  26 

Figure 4.37: Step 2 of OpenMP Implementation using Binary Search  26 

Figure 4.38: Step 3 of OpenMP Implementation using Binary Search  26 



 

 

x 
 

Figure 4.39:  Step 4 of OpenMP Implementation using Binary Search  27 

Figure 4.40: Step 5 of OpenMP Implementation using Binary Search  27 

Figure 4.41: Final sorted array of OpenMP Implementation using 

                      Binary Search        27 

Figure 4.42: Create Buffer for Two Threads Implementation   28 

Figure 4.43: Array for Merging       28 

Figure 4.44: Searching Mechanism using Interpolation Search Ex. 1.  28 

Figure 4.45: Searching Mechanism using Interpolation Search Ex. 2.  29 

Figure 4.46: Step 1 of Two Threads Implementation using Interpolation Search 29 

Figure 4.47: Step 2 of Two Threads Implementation using Interpolation Search 29 

Figure 4.48:  Step 3 of Two Threads Implementation using Interpolation Search 30 

Figure 4.49: Step 4 of Two Threads Implementation using Interpolation Search 30 

Figure 4.50: Step 5 of Two Threads Implementation using Interpolation Search 31 

Figure 4.51: Step 6 of Two Threads Implementation using Interpolation Search 31 

Figure 4.52: First merging array of Two Threads Implementation using  

                      Interpolation Search        31 

Figure 4.53: Second array of Two Threads Implementation using  

          Interpolation Search        31 

Figure 4.54: Array for merging       32 

Figure 4.55: Final sorted array of Two Threads Implementation using  

          Interpolation Search        32 

Figure 4.56: Step 1 of Multi-Threads Implementation    32 

Figure 4.57: Final sorted array of Multi-Threads Implementation   33 



 

 

xi 
 

List of Tables 

 

Table 1: The buffer information       15 

Table 2: The buffer information       21 

Table 3: Run time statistics of Binary Merging, Tape Merging,  

   and Interpolation Merging       34  

Table 4: Comparison the average number of iterations of Binary  

   merging and interpolation merging.      35 

Table 5: Run time statistics of OpenMP implementation and  

   Pthread implementation of interpolation merging.    35 

 



 
 

1 
 

Chapter 1 

Introduction 

1.1 Objective of the Research 

Sorting a huge data set in a nominal time is always a demand for almost all fields of computer 

science. Divide and conquer is a general and extremely successful strategy for the design and 

analysis of algorithm. It is the basis of infinitude of sorting algorithm for the usual 

comparison-based model of computation. Overall view, it is simply bottom up approach 

followed by a top down traverse. In the sorting technique arena, natural order and merging 

are taken into deep consideration. Measurements of disorderness through top down approach 

and suitable merging scheme for bottom up approach have been studied as a universal 

method for the development of sorting algorithms. Existing tape merge [1] and 

simple/generalized binary algorithms [1] are usually used to merge to disjoint linearly 

ordered sets.  

1.2 Methodology of Research 

In the proposed algorithm, at first the disorderness data is checked and partitions in a single 

pass over the data set. Thereafter, the partitions are selected according to their order and 

merged using interpolation searching technique. It has been ensured that the approach 

provides the optimum time while the bottom up merging tree is balanced.  

1.3 Results of the Research 

Our results, both theoretical and experimental, indicate a constant factor (~2.7) speed up over 

binary merging scheme.  The parallel version of the proposed algorithm is implemented with 

OpenMP and Pthreads frameworks. It shows that, OpenMP implementation is performing 

better than Pthread implementation. 

 

 

 

 



 
 

2 
 

Chapter 2 

Background Study 

2.1 Measure of Disorderness 

In this section, we used “log” to denote the base 2 logarithms, “n” is the total number of 

elements in the data set, “m” is the number of partition buffers required. 

2.1.1 Natural Disorder 

Any raw data set contains some natural order or sequence among them. Even in the most 

disordered situation at least two elements have an ordered sequence, may be increasing or 

decreasing. For an example, let’s consider the data set {9, 5, 3, 4, 10, 12, 8, 2}. Using these 

data we will get the following zig-zag diagram, Figure 2.1.1.1. Our goal is to make the data 

sorted, means the result set of the above data will be {2, 3, 4, 5, 8, 9, 10, 12}. Figure 2.1.1.2 

presents the Zig-Zag diagram represents sorted data in natural order. 

 

 

Figure 2.1: Zig-Zag diagram for natural disorder data set 

 

    

Figure 2.2: Zig-zag diagram for sorted data in natural order 

Zig zag Diagram for Natural Data

0

5

10

15

1 2 3 4 5 6 7 8

Sequence Id or Index

V
al

u
e

After Sorting Data

0

5

10

15

8 3 4 2 7 1 5 6

Sequence Id or Index

Va
lu

e



 
 

3 
 

 
 

Figure 2.3: Revised Zig-Zag diagram for natural disorder data set. 

 

 

Figure 2.4: Zig-zag diagram after buffering. 

Figure 2.1.1.3 and 2.1.1.4 will help to understand the difference between classical sorting 

algorithm and adaptive sorting algorithm. In all classical ways, sequence Ids are shifted to 

gain the sorted order. However, in adaptive sorting scheme, lines, connecting the points are 

taken into consideration. And by doing so, all the points on the two lines (currently under 

process), are in action. In natural order, in the proposed technique, at least two points are in 

one line and three comes the time complexity of proposed technique: where m<=n/2. 

According to the Fig. 2.1.1.4, we make lines L1 = <9, 5, 3>, L2 = <4, 10, 12>, L3 =<8, 2> 

and finally merging these lines using interpolation search we get approximately a straight line 

(Which will represent that the data are sorted) present in Fig 2.1.1.2.   

 

 

 

Zig zag Diagram for Natural Data

0

5

10

15

1 2 3 4 5 6 7 8

Sequence Id or Index

V
a
lu

e



 
 

4 
 

2.1.2 Ordering complexity [2] 

In order to express the performance of a sorting algorithm in terms of the length and the 

disorder in the input we must evaluate the disorder in the input. Intuitively, a measure of 

disorder is a function that is minimized when the sequence has no disorder and depends only 

on the relative order of the elements in the sequence.  

There are several measures of disorder. We define the most three common measures of 

disorder. Runs(n) as the minimum number of contiguous up-sequences required to cover n 

data. A natural generalization of Runs is the minimum number of ascending subsequences 

required to cover the given sequence denoted by Shuffled Up-Sequences (SUS). We 

generalize again and define SMS (n) (for Shuffled Monotone Subsequence) as the minimum 

number of monotone (ascending or descending) subsequences required to cover the given 

sequence. For example W0= < 6, 5, 8, 7, 10, 9, 4, 3, 2, 1 > has Runs(W0)=8, while SUS(W0) 

= ||{<6,8,10>, <5,7,9>, <4>,<3>,<2>,<1>}|| = 7 and SMS(W0) = 

||{<6,8,10>,<5,7,9>,<4,3,2,1>}||= 3. This technique also provide || {< 6, 5 >, < 8, 7 >, < 10, 9, 

4, 3, 2, 1 >} || = 3. The number of ascending runs is directly related to the measure Runs, 

Natural Mergesort takes O( |n| (1+log[Runs(n) +1 ] ) ) time. Quick sort takes O(|n| log[n+1]) 

running time in average case.  

2.2 Merging schemes 

In this section, we are going to describe tape merge algorithm, simple binary merge algorithm 

and the generalized binary algorithm. 

2.2.1 Tape merge 

The "tape merge" algorithm is the commonly used procedure to merge two tapes or lists of 

sorted items. It can be described by the following steps (details of storing and stop conditions 

are omitted): 

TM1. Compare am with bn. 

TM2. If am < bn, set n =n- 1 and go to TM1. 

TM3. If am > bn, set m=m-1 and go to TM1. 

It can be easily shown that 

Kt (m,n) = m + n- 1 

And hence the "tape merge" algorithm is M-optimal for n ≤ m + 3. 



 
 

5 
 

2.2.2 Simple binary merge 

The "simple binary" algorithm can be described by the following steps:  

SB1. Merge am into B by the binary search procedure. 

SB2. Pull out am and elements of B > am. (These are already in order and larger 

than the rest of the elements of A U B.) Set m = m - 1 and redefine m and n. 

(The new n ≥ new m.) Go back to SB1. 

It is clear that under the worst possible outcome, am is always larger than bn, 

and hence no element of B is discarded. Therefore, 

Ks(m, n) = m*ceil(log2 (n + 1)).  

For m=1, we have, 

Ks(m, n)= K(m, n). 

However, we shall show in the next section that 

Ks(m, n) > K(m, n) for m > 2. 

The distinctive feature of these two algorithms is their simplicity, although in general, they 

are quite inefficient in the sense that both Kt(m, n) - K(m, n) or Ks(m, n) - K(m, n) can be 

very large.  

2.2.3 The generalized binary algorithm 

For the sake of simplicity, we shall assume that whenever we are required to merge two 

disjoint linearly ordered sets with cardinalities x and y respectively, n will always refer to 

max (x, y) and m, to min (x, y), so that n ≥ m. 

The generalized binary algorithm may now be described as follows (again, details of storage 

and stop criteria are omitted): 

GB1. Let α= floor(log2 (n/m)) and x = n - 2^α + 1. 

GB2. Compare am with bx. If am < bx, pull out the set of all elements in B ≥ bx, say 

C. We are then left with the problem of merging two disjoint sets A and B C. 

Redefine m and n and go back to GB1. (Note that B - C has n – 2^α elements and 

we need to interchange the role of m and n if and only if n = m.) 

GB3. If am > bx, merge am into the set C - bx by the simple binary algorithm. Note 

that C - bx has exactly 2^α - 1 elements and am can be merged into the set in 

exactly α more comparisons. Pull out am and the set D of all elements in B > am. 



 
 

6 
 

We are then left with the problem of merging the set A - am with the set B - D. 

Redefine m and n and go back to GB1. 

2.3 Parallel Tools 

2.3.1 Thread 

A thread is a semi-process, which has its own stack, and executes a given piece of code. 

Unlike a real process, the thread normally shares its memory with other threads. A Thread 

Group is a set of threads all executing inside the same process. They all share the same 

memory, and thus can access the same global variables, same heap memory, same set of file 

descriptors, etc. All these threads execute in parallel. 

2.3.2 OpenMP 

OpenMP is an implementation of multithreading, a method of parallelizing whereby a master 

thread forks a specified number of slave threads and the system divides a task among them. 

The threads then run concurrently, with the runtime environment allocating threads to 

different processors. 

The section of code that is meant to run in parallel is marked accordingly, with a preprocessor 

directive that will cause the threads to form before the section is executed. Each thread has an 

id attached to it which can be obtained using a function (called omp_get_thread_num()). The 

thread id is an integer, and the master thread has an id of 0. After the execution of the 

parallelized code, the threads join back into the master thread, which continues onward to the 

end of the program. 

By default, each thread executes the parallelized section of code independently. Work-

sharing constructs can be used to divide a task among the threads so that each thread executes 

its allocated part of the code. Both task parallelism and data parallelism can be achieved 

using OpenMP in this way. 

The runtime environment allocates threads to processors depending on usage, machine load 

and other factors. The runtime environment can assign the number of threads based on 

environment variables, or the code can do so using functions. The OpenMP functions are 

included in a header file labeled omp.h in C/C++. 

https://en.wikipedia.org/wiki/Thread_%28computer_science%29
https://en.wikipedia.org/wiki/Runtime_environment
https://en.wikipedia.org/wiki/Preprocessor_directive
https://en.wikipedia.org/wiki/Preprocessor_directive
https://en.wikipedia.org/wiki/Function_%28computer_science%29
https://en.wikipedia.org/wiki/Task_parallelism
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Header_file
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C%2B%2B


 
 

7 
 

 

 

Figure 2.5: Example of OpenMP [3] 

Work-sharing constructs:  

Used to specify how to assign independent work to one or all of the threads. 

• omp for : used to split up loop iterations among the threads, also called loop 

constructs. 

• sections: assigning consecutive but independent code blocks to different threads 

• single: specifying a code block that is executed by only one thread, a barrier is 

implied in the end 

• Master: similar to single, but the code block will be executed by the master thread 

only and no barrier implied in the end. 

2.3.3 Pthreads 

The Pthreads library is a POSIX C API thread library that has standardized functions for 

using threads across different platforms. Historically, hardware vendors have implemented 

their own proprietary versions of threads. These implementations differed substantially from 

each other making it difficult for programmers to develop portable threaded applications. In 

order to take full advantage of the capabilities provided by threads, a standardized 

programming interface was required. For UNIX systems, this interface has been specified by 

the IEEE POSIX 1003.1c standard (1995). Implementations which adhere to this standard are 

referred to as POSIX threads, or Pthreads. Most hardware vendors now offer Pthreads in 

addition to their proprietary API's. 

 Pthreads are defined as a set of C language programming types and procedure calls. Vendors 

usually provide a Pthreads implementation in the form of a include file and a library, which 

you link with your program. The primary motivation for using Pthreads is to realize potential 

https://en.wikipedia.org/wiki/Map_%28parallel_pattern%29


 
 

8 
 

program performance gains. When compared to the cost of creating and managing a process, 

a thread can be created with much less operating system overhead. Managing threads requires 

fewer system resources than managing processes. All threads within a process share the same 

address space. Inter-thread communication is more efficient and in many cases, easier to use 

than inter-process communication. Threaded applications offer potential performance gains 

and practical advantages over non-threaded applications in several other ways:  

• Overlapping CPU work with I/O: (for example), a program may have sections 

where it is performing a long I/O operation. While one thread is waiting for an I/O 

system call to complete, other threads can perform CPU intensive work.  

• Priority/real-time scheduling: tasks, which are more important, can be scheduled to 

supersede or interrupt lower priority tasks.  

• Asynchronous event handling: tasks, which service events of indeterminate 

frequency and duration, can be interleaved. For example, a web server can both 

transfer data from previous requests and manage the arrival of new requests. Multi-

threaded applications will work on a uniprocessor system; yet naturally take 

advantage of a multiprocessor system, without recompiling. In a multiprocessor 

environment, the most important reason for using Pthreads is to take advantage of 

potential parallelism.  

 

 

 

 

 

 

 

 

 

 



 
 

9 
 

Chapter 3 

Related Works 

Merging is a building block for other algorithms, most notably sorting. It is the process 

whereby two pre-sorted lists of m and n data values each are combine in a systematic manner 

to create a single sorted output list of m+n data values and requires O(N) time, which is 

optimal, but also uses O(N) additional space. John Von Neuman first proposed merging in 

1945 as a method for sorting data on digital computer systems that use the stored program 

concept. Kronrod [4] derived a method of merging two sorted sequences of a total of N 

elements in O(N) time using only a constant amount of additional space.  Unfortunately, 

Kronrod’s merging algorithm was not stable. Horvath [5] managed to derive a stable 

algorithm with the same asymptotic complexity which, however, had the undesired 

characteristic of modifying the keys of the elements during the merging. Pardo [6] overcame 

this obstacle and finally derived an asymptotically optimal algorithm which did not use key 

modification. Even though asymptotically optimal, because of their complex structure and the 

large constant of proportionality, both of the algorithms of Horvath and Pardo are considered 

impractical. Dvorak and Durian [7], Mannila and Ukkonen [8] and Huang and Langston [9] 

derived linear time algorithms for unstable in-place merging. Even though there are 

algorithms that perform stable merging by using only a constant amount of extra space in 

linear time, no one succeeds in matching the lower bounds on both the number of 

comparisons Ω(m log(n/m)) and the number of element assignments ( Ω(N) ). The algorithms 

of Horvath [5], Pardo [6] and Huang and Langston [9] perform O(N) comparisons and 

element assignments. SPLITMERGE [10] matches the lower bounds but uses O(m)†extra 

space. The algorithm of Mannila and Ukkonen matches all the lower bounds (number of 

comparisons/ assignments and extra space) but is unstable. To achieve that, it uses the binary 

merge algorithm of Hwang and Lin [11]. In 1972, they presented a general purpose merging 

algorithm, also known as the binary merge algorithm, which combines the ideas of binary 

insertion and linear merge and reduce the number of comparisons of the merging algorithm 

from O(N) to O(m log(n/m+1). This paper serves two purposes. First it presents a collection 

of useful techniques used in merging and, second, it presents an optimal stable in-place 

merging algorithm. 

Interpolation search is a searching method of retrieving a desired record by key in an ordered 

file by using the value of the key and the statistical distribution of the keys. It’s average 



 
 

10 
 

complexity is O(log logn) to retrieve a key, assuming that the n keys are uniformly 

distributed [12].The proposed new sorting algorithm which derives its motivation from 

interpolation search. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

11 
 

Chapter 4 

Materials and Methods 

In this chapter we are going to describe two implementations that are serial implementation 

and parallel implementation. 

4.1 Serial implementation 

In this section we are going to describe interpolation search based sorting and two methods of 

binary search based sorting algorithms. 

4.1.1 Binary search based sorting algorithm Implementation 1 

The algorithm can be better understood if preceded by an example. So this section will aim at 

explaining the algorithm with an example. 

Suppose we want to merge following array using binary search approach. 

 

     

Figure 4.1: Merging Array for Implementation 1 

Here 5 is less than the first value of the Q array so 5 is directly copy into B array. The index 

for value 5 in P buffer is 0. So copy 5 into the position 0 in B array. 

 

      

Figure 4.2: Step 1 of Implementation 1 

7 will search the appropriate position in the buffer Q using Binary search from the position 0 

to 1. The Binary search returns position 0 for value 7. The index for value 7 in P buffer is 1. 

So 7 push in the index (0+1+1=2) in the B array. 



 
 

12 
 

 

Figure 4.3: Step 2 of Implementation 1 

If the search value of the P is greater than the last position value of the Q then copy search 

value into the location (last index of the Q array - first index of the Q array + search value 

position in P array + 1). Here 10 is greater than the last position value of the Q array. The 

index for value 10 in P buffer is 2. So 10 push in the index (1-0+2+1=4) of the B array. 

 

      

Figure 4.4: Step 3 of Implementation 1 

Then 6 will search the appropriate position in the buffer P using Binary search from the 

position 0 to 2. The Binary search returns position 0 for value 6. The index for value 6 in Q 

buffer is 0. So 6 push in the index (0+0+1=1) in the B array. 

 

 

      

Figure 4.5: Step 4 of Implementation 1 

 

 



 
 

13 
 

Then 9 will search the appropriate position in the buffer P using Binary search from the 

position 0 to 2. The Binary search returns position 1 for value 9. The index for value 9 in Q 

buffer is 1. So 9 push in the index (1+1+1=3) in the B array. 

 

 

 

      

Figure 4.6: Step 5 of Implementation 1 

4.1.2 Binary search based sorting algorithm Implementation 2 

Now we implement binary search based sorting algorithm like our interpolation search based 

sorting algorithm method. The algorithm can be better understood if preceded by an example. 

So this section will aim at explaining the algorithm with an example. 

Suppose we want to merge following array. 

 

     

Figure 4.7: Merging Array for Implementation 2 

Here 5 is less than the first value of the Q array so 5 is directly copy into B array at position 

0.  



 
 

14 
 

 

      

Figure 4.8: Step 1 of Implementation 2 

Now 7 will search the appropriate position in the buffer Q using Binary search from the 

position 0 to 1. Then pull out all the element of buffer Q that is less than 7 and search value 

of buffer P into another array B. 

 

 

      

Figure 4.9: Step 2 of Implementation 2 

Here, 10 is greater than the last element of the Q buffer so all of the elements of the Q buffer 

are less than 10. So we directly copy rest of the elements of the Q array into B. then copy 10 

into the B array. 

 

     

Figure 4.10: Step 3 of Implementation 2 

 



 
 

15 
 

4.1.3 Interpolation Search based Sorting Algorithm 

We propose a new modified merge sort algorithm based on interpolation merging technique. 

The algorithm can be better understood if preceded by an example. So this section will aim at 

explaining the algorithm with an example. 

For n element data set, we first make some buffers according to their sequential order, the 

order may be in ascending or descending, the running time will need O(n). Each buffer will 

get information about the starting index and the ending index of the sequential sorted data 

and also a flag which will provide us the order of the sequential data (flag 0 means ascending, 

flag 1 means descending order), this flag will be needed only in the first level comparisons 

but  others time no need to check.  

 Suppose we have a dataset {7,10,12,15,2,9,11,16,20,19,14,8,17,3,1}. So the partition will be 

{7, 10, 12, 15}, {2, 9, 11, 16, 20}, {19, 14, 8}, {17, 3, 1}.   

In table 1, we consider the Figure 4.1.1.1, the buffer L1 = <7, 10, 12, 15>, where 7 is the first 

and 15 is the last element of this particular dataset. So the starting index is 0 and ending index 

is 3. Dataset 7 to 15 is in ascending order, so the flag is set to 0. 

 

     

Figure 4.11: Create Buffer of Unsorted Data for Serial Implementation 

Table 1: The buffer information 

Starting index 0 

Ending index 3 

Flag  0 

 

Now, we pick first two buffer say P and Q. 



 
 

16 
 

 

    

Figure 4.12:  First two Buffer for Serial Implementation 

Here P and Q array are ascending order. If P array is ascending then we start from upward. 

Now 7 will search the appropriate position in the buffer Q using interpolation search from the 

position 0 to 4. Then pull out all the element of buffer Q that is less than 7 and search value 

of buffer P into another array B.  

 

 

   

Figure 4.13: Step 1 of Serial Implementation 

Now 10 will search the appropriate position in the buffer Q using interpolation search from 

the position 0 to 4. Then pull out the elements of buffer Q that starts from last position in the 

Q buffer that already copy + 1 to the new position that will find by interpolation search and 

search value of buffer P into another array B. here 2 is already copy into B array so, copy the 

elements of Q that starts from 9. Here only 9 will be copied because the new search position 

will be 1. 



 
 

17 
 

 

  

      

Figure 4.14: Step 2 of Serial Implementation 

Now 12 will search the appropriate position in the buffer Q using interpolation search from 

the position 1 to 4. Here 2 and 9 are already copy into B array so, copy the elements of Q that 

starts from 11. Here only 11 will be copied because the new search position will be 2.  

 

  

      

Figure 4.15: Step 3 of Serial Implementation 

Now 15 will search the appropriate position in the buffer Q using interpolation search from 

the position 2 to 4. Here 2, 9 and 11 are already copy into B array so, only search value 15 

will be copied into B array.  



 
 

18 
 

 

  

      

Figure 4.16: Step 4 of Serial Implementation 

Now we can see that all the elements of the P array are copied into the B array. But some of 

the element is not copied of the Q array. So rest of the elements of the Q array is copied into 

B array. 

 

      

Figure 4.17: Step 5 of Serial Implementation 

Now we pick last two buffer say P and Q.  

 

     

Figure 4.18: Last Two buffer for Serial Implementation 

Here P and Q array are descending order. If P array is descending then we start from 

backward. So, 8 will search the appropriate position in the buffer Q using interpolation search 

from the position 0 to 2. Note: Here interpolation search return the position 1that is count 



 
 

19 
 

from the backward in Q array.  Then pull out all the element of buffer Q that is less than 8 

and search value of buffer P into another array B. 

 

  

      

Figure 4.19: Step 6 of Serial Implementation 

Now 14 will search the appropriate position in the buffer Q using interpolation search from 

the position 1 to 2. Here, 1 and 3 are already copy into the B array. So, only 14 will be copied 

into the B array.  

  

      

Figure 4.20: Step 7 of Serial Implementation 

Here, we can see that 19 is greater than the first element of the second buffer and Q array is 

descending. All the elements of the Q array are less than 19. So we directly copy rest of the 

elements of the Q array into B array. And then 19 will be copied into the B array. 

 

      

Figure 4.21: Step 8 of Serial Implementation 



 
 

20 
 

Then we merge two sorted array in previous way. So finally we get, 

 

     

Figure 4.22: Final Sorted Array of Serial Implementation 

4.2 Parallel Implementation 

In this section we are going to describe interpolation search based sorting algorithm with 

openMP, binary search based sorting algorithm with openMP, interpolation search based 

sorting algorithm with two threads, binary search based sorting algorithm with two threads, 

interpolation search based sorting algorithm with multi-threads and binary search based 

sorting algorithm with multi-threads. 

4.2.1 Interpolation Search based Sorting Algorithm with OpenMP 

Now we implement interpolation search based sorting algorithm with openMP. The algorithm 

can be better understood if preceded by an example. So this section will aim at explaining the 

algorithm with an example. 

For n element data set, we first make some buffers according to their sequential order, the 

order may be in ascending or descending, the running time will need O(n). Each buffer will 

get information about the starting index and the ending index of the sequential sorted data 

and also a flag which will provide us the order of the sequential data (flag 0 means ascending, 

flag 1 means descending order), this flag will be needed only in the first level comparisons 

but  others time no need to check.  

 Suppose we have a dataset {7,10,12,15,2,9,11,16,20,19,14,8,17,3,1}. So the partition will be 

{7, 10, 12, 15}, {2, 9, 11, 16, 20}, {19, 14, 8}, {17, 3, 1}.   



 
 

21 
 

In table 2, we consider the Figure 4.2.1.1, the buffer L1 = <7, 10, 12, 15>, where 7 is the first 

and 15 is the last element of this particular dataset. So the starting index is 0 and ending index 

is 3. Dataset 7 to 15 is in ascending order, so the flag is set to 0. 

 

     
Figure 4.23: Create Buffer for OpenMP Implementation 

Table 2: The buffer information 

Starting index 0 

Ending index 3 

Flag  0 

 

Now, we pick first two buffer say P and Q. 

 

     

Figure 4.24: First Two Buffer for OpenMP Implementation 

There are many way for merging this array P and Q when we use openMP. One way is 

explained below: 

Suppose, 7 will search the appropriate position in the buffer Q using interpolation search 

from the position 0 to 4. 



 
 

22 
 

 

    

Figure 4.25: Searching Mechanism using Interpolation Search Ex. 1. 

So, the position is 0. 

Another example, 11 will search the appropriate position in the buffer P using interpolation 

search from the position 0 to 3. 

 

 

 

    

Figure 4.26: Searching Mechanism using Interpolation Search Ex. 2. 

So, the position is 1. 

At first, 7 will search the appropriate position in the buffer Q using interpolation search from 

the position 0 to 4. At the same time 2 will search the appropriate position in the buffer P 

using interpolation search from the position 0 to 3. Here 2 is less than the first value of the P 

array so 2 is directly copy into B array. the index for value 2 in Q buffer is 0. So copy 2 into 

the position 0 in B array. The interpolation search return position 0 for value 7. The index for 

value 7 in P buffer is 0. So 7 push in the index (0+0+1=1) in the B array.  

 

 

     

Figure 4.27: Step 1 of OpenMP Implementation using Interpolation Search 



 
 

23 
 

Then, 10 will search the appropriate position in the buffer Q using interpolation search from 

the position 0 to 4. The interpolation search returns position 1 for value 10. The index for 

value 10 in P buffer is 1. So 10 push in the index (1+1+1=3) in the B array. 

 
 

 

Figure 4.28: Step 2 of OpenMP Implementation using Interpolation Search 

12 will search the appropriate position in the buffer Q using interpolation search from the 

position 0 to 4. At the same time 9 will search the appropriate position in the buffer P using 

interpolation search from the position 0 to 3. The interpolation search returns position 2 for 

value 12. The index for value 12 in P buffer is 2. So 12 push in the index (2+2+1=5) in the B 

array. And the interpolation search return position 0 for value 9. The index for value 9 in Q 

buffer is 1. So 9 push in the index (0+1+1=2) in the B array. 

 
 

     

Figure 4.29: Step 3 of OpenMP Implementation using Interpolation Search 

11 will search the appropriate position in the buffer P using interpolation search from the 

position 0 to 3. The interpolation search returns position 1 for value 11. the index for value 10 

in Q buffer is 2. so 10 push in the index (1+2+1=4) of the B array. 

 
 

     

Figure 4.30:  Step 4 of OpenMP Implementation using Interpolation Search 

15 will search the appropriate position in the buffer Q using interpolation search from the 

position 0 to 4. At the same time 16 will search the appropriate position in the buffer P using 



 
 

24 
 

interpolation search from the position 0 to 3. If the search value of the Q is greater than the 

last position value of the P then copy search value into the location (last index of the P array - 

first index of the P array + search value position in Q array + 1). Here 16 is greater than the 

last position value of the P array. The index for value 16 in Q buffer is 3. So 16 push in the 

index (3-0+3+1=7) of the B array. And 15 push in the index (2+3+1=6) of the B array.  

 

 

     

Figure 4.31: Step 5 of OpenMP Implementation using Interpolation Search 

Here 20 is greater than the last position value of the P array. The index for value 20 in Q 

buffer is 4. So 20 push in the index (3-0+4+1=8) of the B array.  

 

     

Figure 4.32: Step 6 of OpenMP Implementation using Interpolation Search 

So, two threads had done their work. Then last two block goes to another two threads. So 

finally, we get, 

 

      

Figure 4.33: Final Sorted Array of openMP Implementation using Interpolation Search 

 



 
 

25 
 

4.2.2 Binary Search based Sorting Algorithm with OpenMP 

Now we implement binary search based sorting algorithm with openMP. The algorithm can 

be better understood if preceded by an example. So this section will aim at explaining the 

algorithm with an example. 

Suppose we want to sort this two array using binary search with openMP.  

 

     

Figure 4.34: Array for Merging 

There are many way for merging this array when we use openMP. One way is explained 

below:  

Suppose, 8 will search the appropriate position in the buffer Q using binary search from the 

position 0 to 3. 

 

   

Figure 4.35: Searching Mechanism using Binary Search. 

Note: Partition point in the array is counted from backward. 

So, the partition point is 2. 

8 will search the appropriate position in the buffer Q using binary search from the position 0 

to 3. At the same time 1 will search the appropriate position in the buffer P using binary 

search from the position 0 to 2. The binary search return position 2 for value 8.we count to 

from backward in the Q array. the index for value 8 in P buffer is (total size of the P array-

index of the Search value) 0. so 8 push in the index (2+0+1=3) in the B array. And 1 is less 

than the last position value of the P array. So all the value of P array is greater than 1. The 



 
 

26 
 

index for value 1 in Q buffer is (total size of the q array-index of the Search value) 0. So 1 

directly pushed at position 0 in the B array. 

 

 

      

Figure 4.36: Step 1 of OpenMP Implementation using Binary Search 

3 will search the appropriate position in the buffer P using binary search from the position 0 

to 2. here 3 is less than the last position value of the P array. the index for value 3 in Q buffer 

is (3-2) 1. so 3 directly pushed at position 1 in the B array. 

 

      

Figure 4.37: Step 2 of OpenMP Implementation using Binary Search 

6 will search the appropriate position in the buffer P using binary search from the position 0 

to 2. Here 6 is less than the last position value of the P array. The index for value 6 in Q 

buffer is (3-1) 2. So 6 directly pushed at position 2 in the B array. 

 

      

Figure 4.38: Step 3 of OpenMP Implementation using Binary Search 

Then, 14 will search the appropriate position in the buffer Q using binary search from the 

position 0 to 3. At the same time 17 will search the appropriate position in the buffer P using 

binary search from the position 0 to 2. The binary search return position 2 for value 14. The 

index for value 14 in P buffer is (total size of the P array-index of the Search value) that is (2-



 
 

27 
 

1) 1. so 14 push in the index (2+1+1=4) in the B array. And The binary search return position 

1 for value 17. The index for value 17 in Q buffer is (total size of the P array-index of the 

Search value) that is (3-0) 3. so 17 push in the index (1+3+1=5) in the B array.  

 

 

      

Figure 4.39:  Step 4 of OpenMP Implementation using Binary Search 

If the search value of the P is greater than the first position value of the Q then copy search 

value into the location (last index of the Q array - first index of the Q array + search value 

position in P array + 1). Here 19 is greater than the first position value of the Q array. the 

index for value 19 in P buffer is (2-0) 2. so 19 push in the index (3-0+2+1=6) of the B array. 

 

   

Figure 4.40: Step 5 of OpenMP Implementation using Binary Search 

So finally we get, 

 

     

Figure 4.41: Final sorted array of OpenMP Implementation using Binary Search 

 



 
 

28 
 

4.2.3 Interpolation Search based Sorting Algorithm with Two Threads 

Now we implement interpolation search based sorting algorithm with two threads. The 

algorithm can be better understood if preceded by an example. So this section will aim at 

explaining the algorithm with an example. 

 

     

Figure 4.42: Create Buffer for Two Threads Implementation 

We merge this two array using interpolation search with two threads. At first P goes to one 

thread. At the same time Q goes to another thread. Now P and Q merge together. Because P 

and Q are independent. 

 

     

Figure 4.43: Array for Merging 

Suppose, 7 will search the appropriate position in the buffer Q using interpolation search 

from the position 0 to 4. 

 

    

Figure 4.44: Searching Mechanism using Interpolation Search Ex. 1. 



 
 

29 
 

So, the position is 0. 

Another example, 11 will search the appropriate position in the buffer P using interpolation 

search from the position 0 to 3. 

 

    

Figure 4.45: Searching Mechanism using Interpolation Search Ex. 2. 

So, the position is 1. 

At first, 7 will search the appropriate position in the buffer Q using interpolation search from 

the position 0 to 4. At the same time 2 will search the appropriate position in the buffer P 

using interpolation search from the position 0 to 3. Here 2 is less than the first value of the P 

array so 2 is directly copy into B array. the index for value 2 in Q buffer is 0. So copy 2 into 

the position 0 in B array. The interpolation search return position 0 for value 7. The index for 

value 7 in P buffer is 0. So 7 push in the index (0+0+1=1) in the B array.  

 

 

     

Figure 4.46: Step 1 of Two Threads Implementation using Interpolation Search 

Then, 10 will search the appropriate position in the buffer Q using interpolation search from 

the position 0 to 4. The interpolation search returns position 1 for value 10. The index for 

value 10 in P buffer is 1. So 10 push in the index (1+1+1=3) in the B array. 

 

 

     

Figure 4.47: Step 2 of Two Threads Implementation using Interpolation Search 



 
 

30 
 

12 will search the appropriate position in the buffer Q using interpolation search from the 

position 0 to 4. At the same time 9 will search the appropriate position in the buffer P using 

interpolation search from the position 0 to 3. The interpolation search returns position 2 for 

value 12. The index for value 12 in P buffer is 2. So 12 push in the index (2+2+1=5) in the B 

array. And the interpolation search return position 0 for value 9. The index for value 9 in Q 

buffer is 1. So 9 push in the index (0+1+1=2) in the B array. 

 
 

     

Figure 4.48:  Step 3 of Two Threads Implementation using Interpolation Search 

11 will search the appropriate position in the buffer P using interpolation search from the 

position 0 to 3. The interpolation search returns position 1 for value 11. the index for value 10 

in Q buffer is 2. so 10 push in the index (1+2+1=4) of the B array. 

  

     

Figure 4.49: Step 4 of Two Threads Implementation using Interpolation Search 

15 will search the appropriate position in the buffer Q using interpolation search from the 

position 0 to 4. At the same time 16 will search the appropriate position in the buffer P using 

interpolation search from the position 0 to 3. If the search value of the Q is greater than the 

last position value of the P then copy search value into the location (last index of the P array - 

first index of the P array + search value position in Q array + 1). Here 16 is greater than the 

last position value of the P array. The index for value 16 in Q buffer is 3. So 16 push in the 

index (3-0+3+1=7) of the B array. And 15 push in the index (2+3+1=6) of the B array.  

 



 
 

31 
 

 

 

     

Figure 4.50: Step 5 of Two Threads Implementation using Interpolation Search 

Then one thread is done his work but another thread is not done his work. So, one thread is 

waiting for another thread until his work is not done. 

Here 20 is greater than the last position value of the P array. The index for value 20 in Q 

buffer is 4. So 20 push in the index (3-0+4+1=8) of the B array.  

 

     

Figure 4.51: Step 6 of Two Threads Implementation using Interpolation Search 

When two threads had done their work. Then copy the B array in the main array. So we get, 

 

 

Figure 4.52: First array of Two Threads Implementation using Interpolation Search 

Then we pick last two buffers.  Then P goes to one thread and Q goes to another thread. So 

finally we get, 

 

      

Figure 4.53: Second array of Two Threads Implementation using Interpolation Search  



 
 

32 
 

Now we pick first sorting buffer and second sorting buffer say P and Q. P goes to one thread 

and Q goes to another thread. 

 

      

Figure 4.54: Array for merging 

So finally we get, 

 

       

Figure 4.55: Final sorted array of Two Threads Implementation using Interpolation Search 

4.2.4 Binary Search based Sorting Algorithm with Two Threads 

Binary search with two threads procedure is same as the interpolation search with two threads 

procedure but only the difference is search mechanism is based on Binary search that is 

already discussed.  

4.2.5 Interpolation Search based Sorting Algorithm with Multi-Threads 

Suppose, There are 4 block in the dataset. We want to merge them. So at first 2 block goes to 

one thread. At the same time second two blocks goes to another thread. So we get, 

 

      

Figure 4.56: Step 1 of Multi-Threads Implementation 



 
 

33 
 

If one thread is done his then thread is wait until all of the thread is not done. 

So finally remaining two buffers go to one thread for merging. So we get,  

 

      

Figure 4.57: Final sorted array of Multi-Threads Implementation 

4.2.6 Binary Search based Sorting Algorithm with Multi-Threads 

Binary search with multi-thread procedure is same as the interpolation search with multi-

thread procedure but only the difference is search mechanism is based on Binary search that 

is already discussed  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

34 
 

Chapter 5 

Experimental results and Analysis 

A code implementing the above algorithm has been made and the working of the algorithm is 

checked. In this chapter we are going to describe the running time and the number of 

iteration’s to sort an array of given size. 

5.1 Results of serial implementation 

The run time is compared with that of Binary Merging, Tape Merging, and Interpolation 

Merging. 

Table 3: Run time statistics of Binary Merging, Tape Merging, and Interpolation Merging. 

Number Of Data Binary 

Merging 

Tape 

merging 

Interpolation 

Merging 

50 0.0000 0.0000 0.0000 

100 0.0000 0.0015 0.0000 

500 0.0000 0.0015 0.0000 

1000 0.0000 0.0016 0.0000 

5000 0.0025 0.0093 0.0028 

10000 0.0057 0.0187 0.0078 

50000 0.0349 0.1013 0.0312 

100000 0.0811 0.2013 0.0702 

200000 0.1770 0.3884 0.1575 

 

Here, we can see that interpolation merging is performing better than binary merging and 

tape merging scheme. 

The expected speed-up of interpolation merge over binary merge implementation is about 

2.7. To confirm this we run a simulation experiment and obtained result. The process was as 

follows:  ten sets each of 1000 pseudorandom numbers chosen between 0 and 1000 were 

generated with the random number generator function Rand. Each set was sorted and merged 

using our proposed technique and the number of comparisons noted. The results of the 

experiment are shown in the following table. 

 

 

 



 
 

35 
 

Table 4: Comparison the average number of iterations of Binary merging and interpolation 

merging.  

Data set Number Comparison in Binary  

merging  

Comparison in 

interpolation merging 

Ratio of comparisons in 

interpolation merging 

to comparisons in 

Binary merging  

1 18218 6698 2.72 

2 18511 6795 2.72 

3 18363 6742 2.72 

4 18046 6718 2.69 

5 18194 6736 2.70 

6 17955 6578 2.73 

7 18046 6594 2.74 

8 18796 6937 2.71 

9 18236 6769 2.69 

10 18437 6807 2.71 

  

5.2 Result of parallel Implementation 

In this section we are going to describe result of OpenMp’s implementation, result of 

Pthreads implementation. 

Table 5: Run time statistics of OpenMP implementation and Pthread implementation of 

interpolation merging. 

Number Of Data OpenMP implementation Pthread Implementation 

50 0.0000 0.0010 
100 0.0000 0.0020 
500 0.0005 0.0100 
1000 0.0007 0.0250 
5000 0.0054 0.1470 
10000 0.0122 0.2690 
50000 0.0861 1.4360 
100000 0.2945 3.0570 
200000 1.0855 5.0940 

 

Here, we can see that, OpenMP implementation is performing better than Pthread 

implementation of Interpolation merging. 

 

 

 

 



 
 

36 
 

Chapter 6 

Conclusion and Future Work  

6.1 Conclusion 

We explore the new sorting algorithm based on interpolation merging. The expected speed up 

both theoretical and experimental, indicate a constant factor (~2.7) speed up over binary 

merging scheme. Also interpolation merging based sorting algorithm is implemented in 

parallel system with OpenMP and Pthreads. Openmp implementation is performing better 

than Pthread implementation.  

6.2 Future work 

If we implement interpolation search based sorting algorithm in GPU based system then 

performance will be improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

37 
 

References 

 

[1] F. K. Hwang and S. Lin, “A simple algorithm for merging two disjoint linearly-ordered             

sets,” SIAM J. Comput ., Vol. 1, No. 1, March 1972.  

[2] Dr. Md. Shamim Akhter and M. Tanveer Hasan, “Sorting N-Elements Using Natural 

Order: A New Adaptive Approach,” Journal of Computer Science 6(2): 163-167, 2010, 

ISSN: 1549-3636.  

[3] https://en.wikipedia.org/wiki/OpenMP, 10-1-2016. 

[4] Kronrod, M. A. (1969) ‘An optimal ordering algorithm without a field operation’, 

Dokladi Akad. Nauk SSSR, 186, 1256–1258. 

[5] Horvath, E. C. (1978) ‘Stable sorting in asymptotically optimal time and extra space, 

Journal of the ACM, 25, 177–199. 

[6] Pardo, L. T. (1977) ‘Stable sorting and merging with optimal space and time bounds, 

SIAM Journal on Computing, 6, 351–372. 

[7] Dvorak, S. and Durian, B. (1988) ‘Unstable linear time O(1) space merging’, The 

Computer Journal, 31, 279–282. 

[8] Mannila, H. and Ukkonen, E. (1984) ‘A simple linear-time algorithm for in situ merging’, 

Information Processing Letters, 18, 203–208. 

[9] Huang, B.-C. and Langston, M. A. (1988) ‘Practical in-place merging, Communications 

of the ACM, 31, 348–352. 

[10] Carlsson, S. (1986) ‘SPLITMERGE: a fast stable merging algorithm’, Information 

Processing Letters, 22, 189–192. 

[11] Hwang, F. K. and Lin, S. (1972) ‘A simple algorithm for merging two disjoint linearly 

ordered sets’, SIAM Journal on Computing, 1, 31–39. 

[12] Yehoshua Perl, Alon Ital and Haim Avni, “Interpolation search- A Log LogN search,” 

Communications of the ACM, July 1978, Volume 21, Number 7. 

 

https://en.wikipedia.org/wiki/OpenMP

	Work-sharing constructs:

