Hadoop Cluster Implementation
By
Aysha Binta Sayed
1D:2013-1-60-068

Supervised By
Dr. Md. Shamim Akhter
Assistant Professor
Department of Computer Science and Engineering

East West University

A project submitted in partial Fullfillment of the Requirements for the Degree of Bachelors

of Science in Computer Science and Engineering

to the

Department of Computer Science and Engineering
East West University

Dhaka, Bangladesh

Abstract

Recently, data driven science is an interdisciplinary field to gather, process, manage, analyze and
extract inherit meaning from unstructured data and formulate them as structura information.
Later, that information can be employed in many practical applications to solve rea life
problems. Hadoop is an open source data science tool and is able to process large amount of data
sets in distributed manner across cluster of computers (a single server and several worker
machines). Hadoop alows running severa tasks in parallel and processing huge amount of
complex data efficiency with respect to time, performance and cost. Thus, learning Hadoop with
its different sub modules is important. This project work covers the implementation of Hadoop
cluster with SSH public key authentication for processing large volumes of data, using cheap,
easily available personal computer hardware (Intel/AMD based pcs) and freely available open
source software (Ubuntu Linux, Apache Hadoop etc). In addition, Mapreduce and Yarn based
distributed applications are ported and tested the cluster’ s workability.

Declaration

We hereby declare that, this report was done under CSE497 and has not been submitted
elsewhere for requirement of any degree of diploma or for any purpose except for publication

Aysha Binta Sayed
|D:2013-1-60-068
Department of Computer Science and Engineering

East West University

Letter of Acceptance

| here declare that this thesisis from the students' own work and best effort of mine, and all other
sources of information used have been acknowledged. This thesis has been submitted with or
approval.

Dr. Md. Shamim Akhter Supervisor
Assistant Professor
Department of Computer Science and Engineering

East West University

Dr. Ahmed Wasif Reza Chairperson

Chairperson and Associate Professor
Department of Computer Science and Engineering

East West University

Acknowledgement

First of al, I would like to thank Almighty Allah for giving me the strength and patience.

Then | would like to thank and pay my sincere gratitude to my mentor and thesis coordinator
Dr. Md. Shamim Akhter for supporting me throughout my endeavor with his extensive
knowledge of the related grounds, his tremendous efforts and robustness that compelled me
succeeding endure the ordeals and his extraordinary visions that enthralled me to refine my work
to the finest point.

| also thank my beloved family and friends, for supporting me throughout the time of our
experience that allowed me to able to come up with what | really have today.

Abstract
Declaration
Letter of Acceptance

Acknowledgement

Chapter 1

Introduction

1.1 Overview
1.2 Motivation
1.3 Objective
1.4 Scope and limitation

1.5 Outline

Chapter 2

Computer Cluster

Chapter 3

Hadoop Cluster

3.1 Hadoop

3.2 Hadoop Architecture

3.3 Hadoop Distributed File System
34YARN

3.5 Hadoop Mapreduce

1-2

5-12

7-8

10-11

Vi

3.6 Hadoop Cluster 12

Chapter 4

Hadoop Multi-Node Cluster Configuration 13-37
Chapter 5

Implementing MapReduce Application 38-45
Chapter 6

Result & Discussion 46-50
Chapter 7

Conclusion & Future Work 51
7.1 Conclusion 51
7.2 Future Work 51

References 52

Vi

Chapter 1

Introduction

1.1 Overview

Today’s world is called a world of large data, ranging from some petabytes to zetabytes. Many
applications are dealing with large amount of data and the results should be obtained within a
particular time limit. So, Apache has come with an appropriate framework to handle large data.
The framework is Hadoop. It enables a number of applications to work with many computational
independent machines and large datasets. Many leading companies like Y ahoo, Facebook are
using Hadoop, nowadays. Using a simple programming model, Apache has developed a
framework for distributed processing of large datasets across the many computers or clusters of
computers. The framework is Apache Hadoop software library. A Hadoop cluster can be scaled
up to thousands of machines and offer separate computation and storage in each single machine.
Hadoop itself has the capability to detect and handle failure jobs.

Map/Reduce (MapReduce) is a computational paradigm implemented on Hadoop. MapReduce is
a job manager and divides jobs/applications into smaller fragments to execute them in
computational nodes in parallel. Hadoop supports HDFS (Hadoop Distributed File System) to
store data on computational nodes. Both MapReduce and HDFS are designed to support fault
tolerance system and able to handle failure nodes automatically. Hadoop cluster is able to boost
the processing speed of data driven application. It is highly scalable as additional computational
nodes can be added to increase the throughput. Hadoop has the ability to resist from task failure
because each piece of processing data is copied onto other computational nodes and they
confirms not to loss data even the corresponding node fails. Hadoop cluster can be implemented
with only a single-node or using multi-nodes. Single-node Hadoop is the basic form. In multi-
noded Hadoop, there is one master node and several computational nodes. Master node consists
NameNode , ResourceManager, JobhistoryServer and each computing node consist DataNode
and NodeManager. This project work covers the implementation of Hadoop cluster with SSH
public key authentication for processing large volumes of data, using cheap, easily available
personal computer hardware (Intel/AMD based PCs) and freely available open source software
(Ubuntu Linux, Apache Hadoop etc). In addition, MapReduce and Yarn based distributed
applications are ported and tested the cluster’ s workability.

1.2 Motivation

Future data scientist needs to learn the tools to analyze, process and visualize data. Hadoop
provides a compact tool to fulfill the above requirements and also use distributed processing to
implement the jobs. Thus, learning Hadoop covers two different data science domains
knowledge including:

» Distributed processing and distributed environment.
» Datavisualization and analytics.

1.3 Objective

The main objective of this project is to implement a complete Hadoop cluster using SSH key
authentication. The sub objectives are as follows: -

» Design, implement and test the cluster computer connection with SSH key
authentication.

» Implement and test the Hadoop tool on cluster master and slaves.

» Import a Yarn and MapReduce based applications and monitor their runtime
environment through web based system.

1.4 Scope and limitation

Scope :

The use of Hadoop cluster might result in count word occurrences, search word, compute
mathematical function of huge amount of data. We can put these huge data in Hadoop distributed
file system instead of local computer system. As the work is distributed among parallel nodes, it
takes less time to process large amount of data. MapReduce based applications can run on this
Hadoop cluster.

Limitation:

Our implementation of Hadoop cluster can work only on broadband link, not able to work in
wireless system. Also the computer RAM is 4 GB which is not sufficient for Hadoop cluster.

1.5 Outline

» Chapter 2, which contains a brief overview on computer cluster.

» Chapter 3, which contains a brief overview on Hadoop , Hadoop Architecture, Hadoop
Distributed File System, Hadoop M apReduce, Hadoop Cluster

» The implementation of Hadoop cluster is discussed in Chapter 4 and will give a clear
view about cluster behavior. In this chapter we are using screen shot of every command
output after execution to make things easier.

» Chapter 5 covers implementing MapReduce program on Hadoop Cluster.

Chapter 6 covers result and discussion of fulfilling the goal of our objective.

» Chapter 7 isall about conclusion and future work.

Y

Chapter 2

Computer Cluster

A computer cluster is a single logical unit consisting of multiple computers that are linked
through a LAN. The networked computers essentially act as a single, much more powerful
machine. A computer cluster provides much faster processing speed, larger storage capacity,
better data integrity, superior reliability and wider availability of resources.

Computer clusters are, however, much more costly to implement and maintain. These results in
much higher running overhead compared to a single computer.

Many organizations use computer clusters to maximize processing time, increase database
storage and implement faster data storing & retrieving techniques.

Figure 1. Cluster Configuration

Diskless Clients To Intemet

PCO: Master node

PC1

PC2

Illln ’ ’I’Ill'lllll(l

PC3

PC4 o |, TEmmmTifaeme
PCsS
PC6

PCNFS: NFS and NFS root server
PC7

/// RS
fff’///’/://ff;f

lln.. /‘IIIII/,,,,,,

Local Ethernet O

There are many types of computer clusters, including:

L oad-balancing clusters
High availability (HA) clusters
High performance (HP) clusters

The major advantages of using computer clusters are clear when an organization requires large
scale processing. When used this way, computer clusters offer:

Cost efficiency: The cluster technique is cost effective for the amount of power and
processing speed being produced. It is more efficient and much cheaper compared to
other solutions like setting up mainframe computers.

Processing speed: Multiple high-speed computers work together to provided unified
processing, and thus faster processing overall.

Improved network infrastructure: Different LAN topologies are implemented to form
a computer cluster. These networks create a highly efficient and effective infrastructure
that prevents bottlenecks.

Flexibility: Unlike mainframe computers, computer clusters can be upgraded to enhance
the existing specifications or add extra components to the system.

High availability of resources: If any single component fails in a computer cluster, the
other machines continue to provide uninterrupted processing. This redundancy is lacking
in mainframe systems.

Chapter 3
Hadoop Cluster

3.1 Hadoop

Hadoop is an open source, Java-based programming framework that supports the processing and
storage of extremely large data sets in a distributed computing environment. It is part of the
Apache project sponsored by the Apache Software Foundation.

Hadoop makes it possible to run applications on systems with thousands of commodity hardware
nodes, and to handle thousands of terabytes of data. Its distributed file system facilitates rapid
data transfer rates among nodes and allows the system to continue operating in case of a node
failure. This approach lowers the risk of catastrophic system failure and unexpected data |oss,
even if a significant number of nodes become inoperative. Consequently, Hadoop quickly
emerged as a foundation for big data processing tasks, such as scientific analytics, business and
sales planning, and processing enormous volumes of sensor data, including from internet of
things sensors.

Hadoop was created by computer scientists Doug Cutting and Mike Cafarellain 2006 to support
distribution for the Nutch search engine. It was inspired by Google's MapReduce, a software
framework in which an application is broken down into numerous small parts. Any of these
parts, which are also called fragments or blocks, can be run on any node in the cluster. After
years of development within the open source community, Hadoop 1.0 became publically
available in November 2012 as part of the Apache project sponsored by the Apache Software
Foundation.

Hadoop framework includes following four models:

Hadoop Common: Hadoop common is Java libraries and utilities, which are required by
otherHadoop modules. They provide filesystem and OS level abstractions and contains the
necessary Java files and scripts required to start Hadoop.

Hadoop YARN: Hadoop YARN is a framework which is used for job scheduling and cluster
resource management.

Hadoop Distributed File System (HDFS): A distributed file system that provides high
throughput access to application data.

HadoopMapReduce: HadoopMapReduce is a Y ARN-based system for parallel processing of
large data sets.

3.2 Hadoop Architecture

Hadoop offers a scalable, flexible and reliable distributed computing big data framework for a
cluster of systems with storage capacity and local computing power by leveraging commodity
hardware. Hadoop follows a Master Slave architecture for the transformation and analysis of
large datasets using HadoopMapReduce paradigm. The 3 important Hadoop components that
play avital rolein the Hadoop architecture are -

i. Hadoop Distributed File System (HDFS) — Patterned after the UNIX file system
ii. HadoopMapReduce
iii. Yet Another Resource Negotiator (Y ARN)

There are mainly five building blocks inside this runtime environment (from bottom to top):

MapReduce Framework

YARN

Infrastructure Federation (S3, etc.)

‘ HDFS | ‘ Storage

Cluster

e Cluster isthe set of host machines (nodes). Nodes may be partitioned in racks. This
isthe hardware part of the infrastructure.

e YARN Infrastructure (Yet Another Resource Negotiator) is the framework
responsible for providing the computational resources (e.g., CPUs, memory, €tc.)
needed for application executions. Two important elements are:

» Resource Manager (one per cluster) is the master. It knows where the
slaves are located (Rack Awareness) and how many resources they have.
It runs several services; the most important is the Resource Scheduler
which decides how to assign the resources.

Resource
Manager
Resource Appllcatlan Node Manager Several event
Master Liveness Liveness
Scheduler handlers
Manitor Manitor

» Node Manager (many per cluster) isthe slave of the infrastructure. When
it starts, it announces itself to the Resource Manager. Periodically, it sends
a heartbeat to the Resource Manager. Each Node Manager offers some
resources to the cluster. Its resource capacity is the amount of memory and
the number of cores. At run-time, the Resource Scheduler will decide how
to use this capacity: a Container isafraction of the NM capacity and it is
used by the client for running a program

Node
Manager

v , v 1 v

Container #2]

[Container #1] Container #2

e HDFS Federation is the framework responsible for providing permanent, reliable and
distributed storage. This is typically used for storing inputs and output (but not
intermediate ones).

e Other dternative storage solutions. For instance, Amazon uses the Simple Storage
Service (S3).

e The MapReduce Framework is the software layer implementing the MapReduce
paradigm.

3.3 Hadoop Distributed File System

A file on HDFS is split into multiple bocks and each is replicated within the Hadoop cluster. A
block on HDFS is a blob of data within the underlying file system with a default size of
64MB.The size of ablock can be extended up to 256 MB based on the requirements.

HDFS Architecture

Y Metadata (MName, replicas, ...):
Metadqta_.ops‘ .v[Namenode fhomefooldata, 3, ...

o

Iz Blo}:‘k ops
Read Datanodes 53 Datanodes
J
; : |
() [|= |—_5| L Replication = = .

() |= \ Blocks

N L1
h. 1 A s [/.
e) _ L y

Rack 1 WWirite Rack 2

Image Credit :Apache.org

Hadoop Distributed File System (HDFS) stores the application data and file system metadata
separately on dedicated servers. NameNode and DataNode are the two critical components of the
Hadoop HDFS architecture. Application data is stored on servers referred to as DataNodes and
file system metadata is stored on servers referred to as NameNode. HDFS replicates the file
content on multiple DataNodes based on the replication factor to ensure reliability of data. The
NameNode and DataNode communicate with each other using TCP based protocols. For the
Hadoop architecture to be performance efficient, HDFS must satisfy certain pre-requisites —

> All the hard drives should have a high throughpuit.
» Good network speed to manage intermediate data transfer and block
replications.

e NameNode

NameNode is the center of HDFS file system. NameNode does not store data itself but it
tracks where during the cluster the datafile is held. When client wish to locate afile or want
to add/copy/move/delete a file, they contact to the NameNode. Then the NameNode return
the list of relevant DataNodes servers where the data are located and like this NameNode
gives the successful responds of client’s request. The HDFS file system is highly rely on
NameNode. If the NameNode goes down then the file system also goes offline. There is an
secondaryNameNode which also can be hosted on a separate machine. Secondary
NameNode only creates checkpoints of the Namespace by merging the edits file into the
fsimage file. The NameNode stores file system metadata into two different files. Oneis the
fsimage and the other is the edit log.

» Thefsimage file stores a complete snapshot of the file system’s metadata at a specific
moment in time.

» The edit log stores the incremental changes such as renaming or appending afew bytesto
afilefor durability.

When the NameNode starts, fsimage file is loaded and then the contents of the edits file are
applied to recover the latest state of the file system. The only problem with this is that over the
time the edits file grows and consumes all the disk space resulting in slowing down the restart
process. If the Hadoop cluster has not been restarted for months together then there will be a
huge downtime as the size of the edits file will be increase.

DataNode

In Hadoop Distribute File System, DataNode store the actual data. When Hadoop cluster is
starts, DataNode connects to the NameNode. Then DataNode gives responds to the request of
NameNode fro filesystem operations. Once NameNode provide the location of the data to the
client, client application can talk directly to a DataNode.

3.4Yarn

YARN (Y et Another Resource Negotiator) is a cluster management technology.Y ARN is one of

the key features in the second-generation Hadoop 2 version of the Apache Software Foundation's
open source distributed processing framework. Originally described by Apache as a redesigned
resource manager, YARN is now characterized as a large-scale, distributed operating system for
big data applications.

The YARN infrastructure and the HDFS federation are completely decoupled and independent:
the first one provides resources for running an application while the second one provides storage.
The MapReduce framework is only one of many possible framework which runs on top of
YARN (athough currently is the only one implemented).

YARN: Application Startup

Job Resource
Submitter Manager

[

Manager #1 Manager #2 Manager #3 Manager #4 Manager #5

RACK #2

/ A
Node l Node] | ‘ Node Node | Node

RACK #1

In YARN, there are at |east three actors;

e Job Submitter (the client)
e Resource Manager (the master)
e Node Manager (the slave)

The application startup process is the following:

aclient submits an application to the Resource Manager
the Resource Manager allocates a container

the Resource Manager contacts the related Node Manager
the Node Manager launches the container

the Container executes the Application Master

agrwbdE

Job Resource Node
Submitter 1 Manager 3 Manager #X
2 a
\J/
Resource
Scheduler

Container #Y

Application
Master

The Application Master is responsible for the execution of a single application. It asks for
containers to the Resource Scheduler (Resource Manager) and executes specific programs (e.g.,
the main of a Java class) on the obtained containers. The Application Master knows the
application logic and thus it is framework-specific. The MapReduce framework provides its own
implementation of an Application Master.

The Resource Manager is a single point of failurein YARN. Using Application Masters, Y ARN
is spreading over the cluster the metadata related to running applications. This reduces the load
of the Resource Manager and makes it fast recoverable.

3.5 Hadoop MapReduce

The execution of a MapReduce job begins when the client submits the job configuration to the
Job Tracker that specifies the map, combine and reduce functions along with the location for
input and output data. On receiving the job configuration, the job tracker identifies the number of
splits based on the input path and select Task Trackers based on their network vicinity to the data
sources. Job Tracker sends a request to the selected Task Trackers.

The processing of the Map phase begins where the Task Tracker extracts the input data from the
splits. Map function is invoked for each record parsed by the “InputFormat” which produces
key-value pairs in the memory buffer. The memory buffer is then sorted to different reducer
nodes by invoking the combine function. On completion of the map task, Task Tracker notifies
the Job Tracker. When all Task Trackers are done, the Job Tracker notifies the selected Task
Trackers to begin the reduce phase. Task Tracker reads the region files and sorts the key-value
pairs for each key. The reduce function is then invoked which collects the aggregated values into
the output file.

MapReduce is a framework using which we can write applications to process huge amounts of
data, in parallel, on large clusters of commodity hardware in areliable manner.

MapReduce is a processing technique and a program model for distributed computing based on

java. The MapReduce agorithm contains two important tasks, namely Map and Reduce. Map
takes a set of data and converts it into another set of data, where individual elements are broken

10

down into tuples (key/value pairs). Secondly, reduce task, which takes the output from a map as
an input and combines those data tuples into a smaller set of tuples. As the sequence of the name
MapReduce implies, the reduce task is aways performed after the map job.

The major advantage of MapReduce is that it is easy to scale data processing over multiple
computing nodes. Under the MapReduce model, the data processing primitives are called
mappers and reducers. Decomposing a data processing application into mappers and reducers is
sometimes nontrivial. But, once we write an application in the MapReduce form, scaling the
application to run over hundreds, thousands, or even tens of thousands of machinesin acluster is
merely a configuration change. This simple scalability is what has attracted many programmers
to use the MapReduce model.

Algorithm:
o Generally MapReduce paradigm is based on sending the computer to where the data
resides!
o MapReduce program executes in three stages, namely map stage, shuffle stage, and
reduce stage.

o Map stage : The map or mapper’sjob isto process the input data. Generally the
input dataisin the form of file or directory and is stored in the Hadoop file
system (HDFS). The input file is passed to the mapper function line by line. The
mapper processes the data and creates several small chunks of data.

o Reduce stage : This stage is the combination of the Shuffle stage and the Reduce
stage. The Reducer’sjob isto process the data that comes from the mapper. After
processing, it produces a new set of output, which will be stored in the HDFS.

e During aMapReduce job, Hadoop sends the Map and Reduce tasks to the appropriate
serversin the cluster.

e Theframework manages all the details of data-passing such asissuing tasks, verifying
task completion, and copying data around the cluster between the nodes.

e Most of the computing takes place on nodes with data on local disks that reduces the
network traffic.

o After completion of the given tasks, the cluster collects and reduces the data to form an
appropriate result, and sends it back to the Hadoop server.

11

3.6 Hadoop Cluster

A Hadoop cluster is a special type of computational cluster which is designed specially for
storing and anayzing large amounts of unstructured data in a distributed computing
environment. Hadoop cluster can be implemented through Hadoop open source distributed
software (which is free) on low cost commodity computers. Typically one machineis create as a
Master Node and other machines are creates as Slave Nodes. In a small cluster there should be at
least one muster and one slave. Master Node is consist of NameNode, SecondaryNameNode,
ResourceManager, JobHistoryServer. These jobs run as ajava process in Hadoop cluster. On the
other hand, Slave Node consists of DataNode and NodeManager. These jobs also run as a java
process in Hadoop cluster. There are two types of Hadoop cluster. One is single node Hadoop
cluster and another is multi-node Hadoop cluster. In chapter 4, we will implement multi-node
Hadoop cluster.

12

Chapter 4
Hadoop Multi-Node Cluster Configuration

This chapter explains the set up of the Hadoop Multi -Node cluster on a distributed environment.

Asthe whole cluster cannot be demonstrated we are explaining the Hadoop cluster environment
using two systems (one master and one slave); given below are their P addresses.

e Hadoop Master: 192.168.2.130 (hadoopmaster)
e Hadoop Slave: 192.168.2.131 (hadoopslavel)

Follow the steps given below to have Hadoop Multi-Node cluster set up.

e Hadoop Version
Hadoop-2.7.3
e Operating System Used
Linux (Ubuntu, Version 14.04)

Creating The hadoopmaster

e Installing JAVA

Javaisthe main prerequisite for Hadoop. First of all, you should verify the existence of javain
your systemusing “ java -version” . The syntax of javaversion command is given below.

root@hadoopmaster:~# java -version

If thereisno javainstallsin your system then you shall get the following option to install java.

13

Now let us update the system & install Oracle java 1.7. During the installation, if it prompts for a
configuration, pressY.

root@hadoopmaster:~# apt-get update

root@hadoopmaster:~# apt-get install oracle-javar-installer

Here occurs an error during the installation. So for installing the java we need to give the
following command

root@hadoopmaster:~# add-apt-repository ppa:webupd8team/java
Now again update the system by giving the following command
root@hadoopmaster:~# apt-get update

Now again give the command

14

root@hadoopmaster:~# apt-get install oracle-javar-installer

hadoopmaster: ~
nfiguration

Configuring oracle-java7-installer

Oracle Binary Code License Agreement for the Java SE Platform Products
and JavaFx

You MUST agree to the license available in http://java.com/license if
you want to use Oracle JDK.

S EEEED

hadoopmaster: ~

guration

Conflguring eracle-java7-installer
In order to install this package, you must accept the license terms, the
"Oracle Blnary Code License Agreement for the Java SE Platform Products
and JavaFX ". Not accepting will cancel the installation.
Do you accept the Oracle Binary Code license terms?

f-ves] <Nox

Now check whether the installation is complete or not by giving the following command
root@hadoopmaster:~# java -version

Output looks like below

15

e Installing ssh

Hadoop requires ssh access to manage its nodes for remotely controlling or transferring files
between nodes. For installing ssh give the following command.

root@hadoopmaster:~# apt-get install openssh-server

Write yes and wait until the installation is compl ete.
e Mapping the nodes :

root@hadoopmaster:~# vi /etc/hosts

Enter the following linesin the /etc/hosts files.

192.168.2.130 hadoopmaster

192.168.2.131 doopslavel

=

SYEEOoN]e

16

e Download and Install Hadoop distribution

First of all check Latest Stable Hadoop Realise Available at:
http://hadoop.apache.org/releases.html . In this configuration we are downloading and installing
Hadoop-2.7.3 . We will install it under /usr/local/ directory. After that we will also create few
additional directories like namenode for hadoop to store all namenode information and
namesecondary to store the checkpoints images.

root@hadoopmaster:~# cd /usr/local

root@hadoopmaster:/usr/local/# wget http://www-
eu.apache.org/dist/hadoop/core/stable2/hadoop-2.7.3.tar.gz

root@hadoopmaster:/usr/local/# tar —xzvf hadoop-2.7.3.tar.gz >> /dev/null

root@hadoopmaster:/usr/local/# mv hadoop-2.7.3 /usr/local/hadoop

root@hadoopmaster:/usr/local/# mkdir -p /usr/local/hadoop_work/hdfs/namenode
root@hadoopmaster:/usr/local/# mkdir -p /usr/local/hadoop work/hdfs/namesecondary
. Setup Environment Variables

We shall setup some environment variables in .bashrc so that every time we restart our machines,
it knows where to find Java or Hadoop installation location inside the machine. To do thisfirst,
we need to find out where JAV A has been installed. According to this Configuration java has
been installed within one of the subdirectories under /usr/lib/jvm/ directory. So we need to go to
the location and confirm that javaisthere.

17

For that write the following command in the terminal .
root@hadoopmaster:/usr/local/# cd /usr/lib/jvm/java-7-oraclefjre

root@hadoopslavel:/ust/lib/jvm/java-7-oracle/jre#t java—version

The above output shows that Javais there inside the default-java directory

Now open .bashrc and put these lines at the end of your .bashrc file
root@hadoopmaster:/usr/lib/jvm/java-7-oracle/jrett vi ~/.bashrc
And put these lines at the end of your .bashrc file

export JAVA_HOME=/usr/lib/jvm/java-7-oracle/jre

export PATH=$PATH:$JAVA_HOME/bin

export HADOOP_CL ASSPATH=/usr/lib/jvm/java-7-oracl€e/lib/tools.jar

export HADOOP_HOM E=/usr/local/hadoop

export PATH=$PATH:$HADOOP_HOME/bin

export PATH=3PATH:$HADOOP_HOME/shin

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djavallibrary.path=$HADOOP_HOME/lib"

export CLASSPATH=$CLASSPATH:/usr/local/hadoop/lib/*:.

export HADOOP_OPTS="$HADOOP_OPTS -Djava.security.egd=file:/dev/../dev/urandom"

18

After setup the environment variable in the .bashrc :

ster: fusr/lib/jvm java-T-oracle fjre

Verify .bashrc by writing the following commands
root@hadoopmaster:/usr/local/# $echo $JAVA_HOME

root@hadoopmaster:/usr/local/# $echo SHADOOP_HOME

. Configuring Password-less & Passphrase-less Login

Hadoop provide scripts (e.g. start-mapred.sh and start-dfs.sh). Use ssh in order to start and stop
the various daemons and some other utilities. To work seamlessly, ssh need to be setup to allow
password-less & passphrase-less|ogin for the root/hadoop user from machinesin the cluster.
The simplest way to achieve thisisto generate a public/private key pair, and it will be shared
across the cluster.

19

Now check that you can ssh to the localhost without passphrase .
root@hadoopmaster:/usr/local/# ssh locahost
If you cannot ssh to localhost without a passphrase, generate an ssh key for the root user

root@hadoopmaster:~# ssh-keygen -t rsa-P "

i
EA
5
E

&

=)
=
-y
LY
3]
2
Q)

If prompted for SSH key file name, Enter filein which to save the key (/root/.ssh/id_rsa) and
press ENTER. Next put the key to authorized keys directory for future password-less access.

root@hadoopmaster:~# cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized keys
root@hadoopmaster:~# chmod 700 ~/.ssh
root@hadoopmaster:~# chmod 600 ~/.ssh/authorized_keys

Connect and validate ssh password-less login to localhost.

20

e Confirm Hadoop is installed
At this point, we should confirm if hadoop command is accessible from the terminal
root@hadoopmaster:/ust/lib/jvm/java-7-oracle/jrett cd SHADOOP_HOM E/etc/hadoop
root@hadoopmaster:/usr/local/hadoop/etc/hadoop# hadoop version

#output looks like below

Termii

= -
.
5
s
]
#

. Configuring the hadoopmaster

Y ou have to configure some Hadoop server files so that we can start the Hadoop Cluster. These
configuration files are located under /usr/local/hadoop/etc/hadoop folder. In this configuration
we will use YARN as the cluster management framework.

Gansonfe:

21

Among all this configuration files we will configure some minimal configuration filesjust to get
us started on the Hadoop Cluster. Here is a description why we configure these files.

Configuration

Description of Log Files

Filenames
hadoop-env.sh Environment variables that are used in the scripts to run Hadoop.
core-sitexml Configuration Settings for Hadoop Core such as 1/0 settings that are
' common to HDFS and MapReduce
hdfs Configuration settings for HDFS daemons, the NameNode, the
s-sitexml

SecondaryNameNode and the DataNode

mapred-site.xml

Configure settings for run as Yarn application and MapReduce
daemons : JobHistoryServer

Configure settings for Y arn daemons : the ResourceM anager and the

yarn-site.xml NodeManager
masters A list of machines(one per line) that each run aNameNode
& SecondaryNameNode
Javes A list of machines(one per line) that each run a DataNode and

NodeM anager

o Configure hadoop-env.sh

One of the important environment variable for Hadoop daemon is $JAVA_HOME in hadoop-
env.sh. Thisvariable direct Hadoop daemon to the Java path in the system. From the base of
Hadoop installation path (e.g. /usr/local/hadoop), open the etc/hadoop/hadoop-env.sh file,

root@hadoopmaster:/usr/lib/jvm/java-7-oracle/jre# vi /usr/local/hadoop/etc/hadoop/hadoop-

env.sh

Inside the file, find the line export JAVA_HOME=${JAVA_HOME}. Replace thelinelike
below
export JAVA_HOME=/usr/lib/jvm/java-7-oracleljre

22

. Configure core-site.xml

From the base of Hadoop installation path (e.g. /usr/local/hadoop), edit the etc/hadoop/core-
sitexml file. The origina installed file will have no entrees other than the <configuration>
</configuration> tags. There are two properties that need to be set. Thefirst isthe fs.defaultFS
property that sets the host and request port for the hadoopmaster (M etadata server for HDFS).
The second isio.file.buffer.size, which is the size of read/write buffer used in sequenceFiles.
Open the core-site. xml from the terminal by giving the following command.

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi core-site.xml

Copy the following lines and remove the original empty <configuration> </configuration> tags.

<configuration>

<property>

<name>fs.defaultFS</name>
<value>hdfs:;//NameNode:8020/</value>
</property>

<property>
<name>io.file.buffer.size</name>
<value>131072</vaue>

</property>

</configuration>

cal/hadoop/etc/hadoop

o Configure hdfs-site.xml

From the base of the Hadoop installation path, edit the etc/hadoop/hdfs-site.xml. In hdfs-site.xml
we specify where is the name node directory (which we created previoudly at the end of Hadoop
installation) and how many backup copies of the datafilesto be created in the system (called
replication) inside the file under the configuration tag. Open the hdfs-site xml from the terminal
by giving the following command.

23

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi hdfs-site.xml

Copy the following lines and remove the original empty <configuration> </configuration> tags.

<configuration>

<property>

<name>dfs.namenode.name.dir</name>
<vaue>file://usr/local/hadoop work/hdfs/namenode</value>
</property>

<property>

<name>dfs.datanode.data.dir</name>
<value>file://usr/local/hadoop_work/hdfs/datanode</value>
</property>

<property>

<name>dfs.namenode.checkpoint.dir</name>
<vaue>file://usr/local/hadoop_work/hdfs/namesecondary</value>
</property>

<property>

<name>dfs.replication</name>

<value>2</value>

</property>

<property>

<name>dfs.block.size</name>

<value>134217728</value>

</property>

</configuration>

o Configure mapred-site.xml

From the base of the Hadoop installation, edit the etc/hadoop/mapred-site.xml file. In thisinstall
we will use the value of “yarn” to tell MapReduce that it will runasaYARN application. Also
we will configure the MapReduce Job History Server. First, copy the template file to the mapred-
sitexml.

24

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# cp mapred-site.xml.template mapred-site.xml
Then open the mapred-site.xml from terminal by giving the following command
root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi mapred-site.xml

Next, copy the following lines and and remove the original empty <configuration>
</configuration> tags.

<configuration>

<property>
<name>mapreduce.framework.name</name>
<vaue>yarn</value>

</property>

<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoopmaster:10020</value>

</property>

<property>
<name>mapreduce.jobhistory.webapp.address</name>
<vaue>hadoopmaster:19888</value>

</property>

<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user/app</value>

</property>

<property>

<name>mapred.child.java.opts</name>

<value>-Djava security.egd=file:/dev/../dev/urandom</value>
</property>

</configuration>

ert
g adoopmaster: fusrflocal/hadoop/etc/hadoop

25

. Configure yarn-site.xml

From the base of the Hadoop installation, edit the etc/hadoop/yarn-sitexml file. In this

configuration we setup YARN site specific properties for Resource Manager & Node Manager.

Open thefile:

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi yarn-site.xml

Copy the following to the Hadoop etc/hadoop/yarn-site.xml file and remove the original empty

<configuration> </configuration> tags.

<configuration>

<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoopmaster</value>

</property>

<property>
<name>yarn.resourcemanager.bind-host</name>
<value>0.0.0.0</value>

</property>

<property>
<name>yarn.nodemanager.bind-host</name>
<value>0.0.0.0</value>

</property>

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>

<property>
<name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>

<name>yarn.log-aggregati on-enable</name>
<value>true</value>

</property>

<property>
<name>yarn.nodemanager.local-dirs</name>
<value>file://usr/local/hadoop_work/yarn/local</value>
</property>

<property>
<name>yarn.nodemanager.log-dirs</name>
<vaue>file://usr/local/hadoop_work/yarn/log</value>
</property>

<property>
<name>yarn.nodemanager.remote-app-log-dir</name>
<vaue>hdfs://hadoopmaster:8020/var/l og/hadoop-yarn/apps</val ue>
</property>

</configuration>

26

yarn-site.xml

root@hadoopmaster: fusrflocal hadoopfetc/hadoop

.hostname</name:=

o Setup the masters

From the base of the Hadoop installation, edit the etc/hadoop/masters . The mastersfile at Master
server contains a hostname of Secondary Name Node servers. We will configure hadoopmaster
as the host name of secondary name node. Open the terminal

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi masters

Inside the file, put oneline:
hadoopmaster

E:
ES

ecal/hadocp/etc/hadecp

CECEELEEL

27

o Setup the slaves
From the base of the Hadoop installation, edit the etc/hadoop/slaves. The slavesfile at Master
node contain alist of host, one per line, that are to host of DataNode and NodeM anager servers.
Here we define hadoopslavel as the host of DataNode and NodeM anager . Open the terminal:
root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi slaves

Inside the file put one line:

hadoopslavel

Creating The hadoopslavel

e Installing JAVA in hadoopslavel
root@hadoopslavel:~# apt-get update
root@hadoopslavel:~# add-apt-repository ppa:webupd8team/java
root@hadoopslavel:~# apt-get update
root@hadoopslavel:~# apt-get install oracle-javar-installer

e Installing ssh
root@hadoopslavel:~# apt-get install openssh-server
e Mapping the nodes :

root@hadoopslavel:~# vi /etc/hosts

Enter the following linesin the /etc/hosts files.

28

192.168.2.130 hadoopmaster
192.168.2.131 hadoopslavel

. Setup Environment Variables
Open the .bashrc file

root@hadoopslavel:~# vi ~/.bashrc

And put these lines at the end of your .bashrc file

export JAVA_HOME=/usr/lib/jvm/java-7-oracleljre

export PATH=$PATH:$JAVA_HOME/bin

export HADOOP_CLASSPATH=/usr/lib/jvm/java-7-oracl€/lib/tools.jar

export HADOOP_HOM E=/usr/local/hadoop

export PATH=$PATH:$HADOOP_HOME/bin

export PATH=$PATH:$HADOOP_HOME/sbin

export HADOOP_MAPRED HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=3$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djavallibrary.path=$HADOOP_HOME/lib"

export CLASSPATH=$CLASSPATH:/usr/local/hadoop/lib/*:.

export HADOOP_OPTS="$HADOOP_OPTS -Djava.security.egd=file:/dev/../dev/urandom"

o Configuring Password-less & Passphrase-less Login
root@hadoopslavel:~# ssh-keygen -t rsa-P "
root@hadoopslavel:~# cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized keys
root@hadoopslavel:~# chmod 700 ~/.ssh
root@hadoopslavel:~# chmod 600 ~/.ssh/authorized_keys

e Hadoop Installation
Thistime we will not install Hadoop from beginning as we have aready installed it in the
hadoopmaster . Instead, we will copy the installation directories from the hadoopmaster to the
hadoopslavel. In order to copy the directory, we will first need to include the public key of the
hadoopmaster to the authorized keys of the hadoopslavel and aso the public key of the

hadoopslavel to the authorized keys of the hadoopmaster so that we can use the SSH file copy
program (scp) for copying.

Now copy the public key from hadoopslavel and paste it to hadoopmaster
root@hadoopmaster:~# cd ~/.ssh

root@hadoopmaster:~/.ssh# vi authorized keys

Now paste the public key of hadoopslavel and then confirm the editing by the following
command.

root@hadoopmaster:~/.ssh# cat authorized_keys

Terminal B o
- root@hadoopmaster: ~/.ssh

Now copy the public key hadoopmaster and paste it to hadoopslavel

root@hadoopslavel:~# cd ~/.ssh

root@hadoopslavel:~/.ssh# vi authorized keys

30

root@hadoopslavel:~/.ssh# cat authorized_keys

-
ia
)
3
B
B
=
w
2]
.

¢ Format Name Node on hadoopmaster
We will format the name node before starting anything now.

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# /usr/local /hadoop/bin/hadoop namenode -
format

To check whether namenode has fomat give the command again and you should see Re-
format filesystem in storage Directory /usr/local/hadoop_work/namenode. Always give no
command for re-format. This means the namenode format has been done successfully.

31

e start HDFS services

It stime to start the Hadoop Distributed File System in the hadoopmaster as well as the
hadoopslavel in the Hadoop Cluster.

root@hadoopmaster:/usr/local# $HADOOP_HOME/sbin/start-dfs.sh
After the command executed you should see NameNode and SecondaryNameNode started as

java process in hadoopmaster and DataNode as java process in hadoopslavel.To check whether
the services are running or not give ajps command on both hadoopmaster and hadoopslavel .

root@hadoopmaster:/usr/local# jps

root@hadoopslavel:/usr/local# jps

NP ELE LT EIRER

If the process did not start, it may be helpful to inspect the log files.

32

All Hadoop services can be stopped using the following command.

root@hadoopmaster:/usr/local# $HADOOP_HOM E/sbin/stop-dfs.sh

Once the Namenode & Datanodes starts successfully, we have to create few directoriesin
hadoop filesystem which has been listed in our site specific configuration files. These HDFS
directories will be used by Y ARN MapReduce Staging, Y ARN Log & JobHistoryServer.

root@hadoopmaster:/usr/local# hadoop fs -mkdir /tmp
root@hadoopmaster:/usr/loca# hadoop fs -chmod -R 1777 /tmp

root@hadoopmaster:/usr/local# hadoop fs -mkdir /user
root@hadoopmaster:/usr/loca# hadoop fs -chmod -R 1777 /user

root@hadoopmaster:/usr/loca# hadoop fs -mkdir /user/app
root@hadoopmaster:/usr/local# hadoop fs -chmod -R 1777 /user/app

root@hadoopmaster:/usr/loca# hadoop fs -mkdir -p /var/log/hadoop-yarn
root@hadoopmaster:/usr/local# hadoop fs -chmod -R 1777 /var/log/hadoop-yarn

root@hadoopmaster:/usr/loca# hadoop fs -mkdir -p /var/log/hadoop-yarn/apps
root@hadoopmaster:/usr/local# hadoop fs -chmod -R 1777 /var/log/hadoop-yarn/apps

Now Verify the HDFS File Structure

root@hadoopmaster:/usr/loca# hadoop fs-Is-R /

Output should look like below:

e start YARN services
After HDFS services started, Y ARN services need to be started.
root@hadoopmaster:/usr/local# $HADOOP_HOME/shin/start-yarn.sh
ResourceManager in hadoopmaster and NodeManager in hadoopslave must be started.

To check whether the services are running or not give ajps command on both hadoopmaster and
hadoopslavel .

root@hadoopmaster:/usr/local# jps

root@hadoopslavel:/usr/loca# jps

34

e start MapReduce HistoryServer

Before starting the HistoryServer quickly edit the SHADOOP_HOM E/etc/hadoop/mapred-
sitexml in the hadoopmaster. Replace the hostname in the value for the property names as below
from hadoopmaster to 0.0.0.0:

mapreduce.jobhistory.address from hadoopmaster: 10020 to 0.0.0.0:10020

mapreduce.j obhistory.webapp.address from hadoopmaster: 19888 to 0.0.0.0:19888

Now run the below command if it runswell you should see JobHistoryServer in hadoopmaster .
root@hadoopmaster:/usr/local# SHADOOP_HOM E/shin/mr-jobhistory-daemon.sh start
historyserver

Finally see all the daemons running in the hadoopmaster as well as the hadoopslavel.

root@hadoopmaster:/usr/local# jps

root@hadoopslavel:/usr/loca# jps

ST LT LTE]

Now the cluster is set up and running .

35

e Verify the running services using the Web Interface

Let us check the cluster status in the web browser. HDFS, ResourceManager & HistoryServer
have aweb interface. To monitor HDFS enter the following web address:

http://192.168.2.130:50070

Hamenode information - Mozilla Firefox

Namencde information

Datanodes Datanode Volume Fallures Snapshot Starup Progress Utilities

Overview 1

Started: Fri Apr 07 21:16:40 BOT 2017

Version: 2.7.3, rbaa91f7cbbe9chI2be5982de4 7190 1eBafalecf
Compiled: 2016-08-18T01:41Z by root fram branch-2.7.3
Cluster ID: CID-46b81b45-292a-4a12-bI35-82540468ba04

Block Pool 1D: BP-BOB931683-192.168.2.130-1491348367362

Summary

sacurity s off.

Safemode is off,

11 files and directories, 0 blocks = 11 total filesystem objectis)

Heap Memory used 113.3 MB of 154.5 MB Heap Memory. Max Heap Memory is B89 MB,

Mon Heap Memary used 33,69 MB of 34,94 MB Commited Non Heap Memory. Max Non Heap Mermory is 130 MB

@ Firefox automatically sends some data bo Mozilla so that we can improve your experience. Choose what | Share 8-
To monitor ResourceM anager enter the following address:

http://192.168.2.130:8088

All Applications - Mozilla Firefox

é u All Applications
& 192.168.2.130 ’ + @ B~ cooole a i &
L‘_, -@'hadﬂap All Applications
— + Cluster Cluster Metrics
i About Apps Apps Apps Apps Containers Memory Memory Memory VCores VCores VCores Active Decommissioned
Hedes Submitted Pencing Running Completed Running Used Total Reserved Used Total Meserved Nodes Nodes »
= boge Labeis o 0 o o o 0B 8GB 0B o [o + o o
"'A g Scheduler Metrics
— HEW_SAVING Scheduler Type scheduling Resource Type Minimum Allocation Maxi
m ey Capatity Scheduler [MEMORY] <memory:1024, vCores:1» <memary:8192, v
Eﬂg‘% Show 20 -|entries) Search:
EMILED
& KILLED D User MName | aoplication Type ¢ Queue © StatTime @ FnishTime = % mnalstatus ¢ Progress © Tracking Ul
Schedider Mo data available in Lable

+ Tools Showing 0 to 0 of 0 entries

gl O Firefox automatically sends some data ko Moxilla so that we can improve your experience. Choose What I Share| X

To monitor HistoryServer enter the following address:

http://192.168.2.130:19888

JobHistory - Mozilla Firefox

shiinkl ¥
192.168.2.130 -C f- a i &

'hadaap JobHistory R

®
?i = Application Retired jobs
A
a
7

About

e Show 20 -] entries Search:
Submit Start Finish Job 1D o . - - i Maps Maps EOuC Reduces
+ Tools Time ¢ Time ¢ Time PR RamE e S R S el & T Complenid Total Completed
No data available in table
Showing 0 to 0 of 0 entries
-_—
BN) rirefox automatically sends some data to Moilla 1o that we can improve your experience. choose what 1 share| %

Finally to test installation we will run sample MapReduce example. We will run the sample “pi”
program that calculate the value of pi.

root@hadoopmaster:/usr/loca# hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-
mapreduce-examples-2.7.3.jar pi 2 4

If the program worked correctly, the following should be displayed at the end of the program
output stream. Estimated value of pi is 3.50000000000000000000

-
g

SERImAs;

37

Chaprter 5
Implementing MapReduce Application

MapReduce is known as a core component of the Apache Hadoop software framework.
MapReduce is define as a framework using MapReduce we can implement applications to
process huge amounts of data on Hadoop Cluster. MapReduce can be define as a processing
technique and a program model for distributed computing which is based on java.

A MapReduce Application is consist of three class.

i. Mapper class

ii. Reducer class

iii. Driver class
Mapper class: The Mapper class reads the input files as <key1,valuel> pair and then split the
words and finally give the output as <key2,value2> pair to the reducer.

Reducer class: The Reducer class read the output of Mapper class as <key2,value2> pair and
combine them. Finally give the output to Hadoop Cluster as <key3,value3>.

Driver class: The Driver classis used to build the configuration of the job and then submit the
job to the Hadoop cluster. Also the Driver class contains the main() method and the main()
method accepts argument from the command line.

Example :WordCount

Here, we take an example of WordCount MapReduce application to get a flavor of how
MapReduce work. We implementing WordCount as a simple application that is used to search
word and count the number of occurrences of that search word in agiven input data.

Set Environment Variables:

We assume that environment variables are set as given below in hadoop multi-node cluster.

export JAVA_HOME=/ust/lib/jvm/java-7-oracleljre
export PATH=/usr/lib/jvm/java-7-oracle/lib/tools.jar
export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar

Aswe have not installed jdk so the toolsjar in not in the default JAVA_HOME/lib/ . We have
installed jre so the tools.jar present at /usr/lib/jvm/java-7-oracle/lib/tools.jar

In case you have not install jdk so insure the path of tools.jar otherwise javac command will not
executed because of mentioning wrong path of tools.jar at .bashrc file.

38

Input Data

We have taken an Ebook Ulysses by James Joyce for tesing WordCount program. Thisinput file
contains 268,030 words. The input file looks as shown below:

raat@hadoopmaster: fusrfiacal
ject G beryg k of Uly

Source Program: WordCount.java

import java.io.File;

import java.io.| OException;
import java.util.Scanner;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.mapreduce.lib.input.Filel nputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {
public static class WordM apper extends Mapper<LongWritable, Text, Text, LongWritable> {

public void map(LongWritable key, Text value, Context context) throws | OException, InterruptedException {
Configuration confWithVaue = context.getConfiguration();
String searchVaue = confWithValue.get("va");
String[] splitSearchVaue = searchVaue.split(",");

for(String splitValue : splitSearchValue) {
context.write(new Text(splitValue.toLowerCase()), new LongWritable(0)); }

39

String line = value.toString();
String[] words = line.split(" ");
for (String word : words) {
for(String splitValue : splitSearchValue) {
if (word.equalsignoreCase(splitValue)) {
context.write(new Text(word.toL owerCase()), new LongWritable(1));

}

}

public static class WordReducer extends Reducer<Text, LongWritable, Text, LongWritable> {

public void reduce(Text key, Iterable<L ongWritable> values, Context context)
throws |OEXxception, InterruptedException {
long sum=0;
for (LongWritable val : values) {
sum += val.get();
}

context.write(key, new LongWritable(sum));

}
public static void main(String[] args) throws Exception {

String searchKey ="";
Scanner scanner;
inti=0;
scanner = new Scanner(new File("search_key.txt"));
while (scanner.hasNext()) {
if 1==0){
searchKey = scanner.next();
telse{

}

i++;

searchKey +="," + scanner.next();

}

Configuration conf = new Configuration();
conf.set("val", searchKey);

Job job = Job.getlnstance(conf, "word count");
job.setJarByClass(WordCount.class);

job.setM apperClass(WordM apper.class);
job.setCombinerClass(WordReducer.class);
job.setReducerClass(WordReducer.class);
job.setOutputK eyClass(Text.class);

job.setOutputV alueClass(L ongWritabl e.class);

Filel nputFormat.addI nputPath(job, new Path(args[Q]));
FileOutputFormat.setOutputPath(job, new Path(argg[1]));
System.exit(job.waitForCompletion(true) ?0 : 1);

Compilation and Execution

Let us assume we arein the /usr/local directory where we have install Hadoop on Hadoop muilti-
node cluster.

Follow the stepsin order to compile and execute above program.

Step 1

The following command isto create an input file in your local system.
root@hadoopmaster:/usr/local# vi input

Step 2

The following command is to copy the input data from your local system to HDFS.
root@hadoopmaster:/usr/local# hadoop fs —put input

Step 3

The following command is to check whether the input file is copied to HDFS or not.

root@hadoopmaster:/usr/local# hadoop dfs -Is

41

Step 4

The following command isto create a search file in which is consisting of list of word for
searching in input file. The search file should be creating your local system where you would
create your source code.

root@hadoopmaster:/usr/local# vi search_key.txt

raat@hadoopmaster: fusrflocal

Step 5

The following command isto create .java filein your local system.
root@hadoopmaster:/usr/local# vi WordCount.java

Now copy the above code in thisfile.

Step 6

The following commands are used for compiling the WordCount.java program and creating a
jar for the program.

root@hadoopmaster:/usr/local# hadoop com.sun.tools.javac.Main WordCount.java
root@hadoopmaster:/usr/local# jar —cf wordcount.jar WordCount* .class

Before running step 7 we need to ensure that all Hadoop master and slave node are running their
jobs. If the jobs are not running then give the following commands in master node.

root@hadoopmaster:/usr/local# $HADOOP_HOME/shin/start-dfs.sh

42

root@hadoopmaster:/usr/local# $HADOOP_HOME/shin/start-yarn.sh

root@hadoopmaster:/usr/local# $HADOOP_HOM E/sbin/mr-jobhistory-daemon.sh start
historyserver

Now we can move to step 7

Step 7

The following command isto run WordCount application by taking the input file from HDFS.

root@hadoopmaster:/usr/local# hadoop jar wordcount.jar WordCount input output
search_key.txt 2 16

Wait until the execution is complete . At the execution timeyou will get an output like this.

&
=
-
s
B
=

Step 8
The following command isto verify the output folder in HDFS .

root@hadoopmaster:/usr/local# hadoop dfs -Is output

43

Step 9

The following command isto see the output in part-r-00000 which isin HDFS output folder.

root@hadoopmaster:/usr/local# hadoop dfs—cat output/part-r-00000

Step 10

The following command isto copy the output folder from the HDFS to local file system to
analyze the output.

root@hadoopmaster:/usr/local# hadoop dfs copyTolLoca output

Therefore we compl ete the execution of MapReduce based application on Hadoop Cluster.

44

Now let us see some web interfaces for running the program.

To see the execution time for processing 268.030 data we need to go to the ResourceM anager
web interface

http://hadoopmaster: 8088

tion application_ 14971681404

1 Application applic

He:

{ |4 hadoopmaster . pplication_149 104095 _00 « | (@« . a i o
Z Logged in as drwha
— ~, haEfEJEJpJ Application application_1491681404095_0007
- + Cluster Kill Application
? ,] About Application Overview
Nodes User: (ool
= ::nﬂ Labels Name: word count
S Application Type: MAPREDUCE
A& M_:m’lhﬁ Application Tags:
SUBMITIED YarnApplicationState: FINISHED
s LRI Queus: default
= Ernsees FinalStatus Reported by AM: SUCCEEDED
& EALED Started: Sun Apr 09 02:52:14 +0600 2017

Elapsed: 4lsec
Seheduler Tracking URL: History
Diagnostics:

Tools
Application Metrics
Total Resource Preempted: <memory:0, vCores:0>
Total Number of Non-AM Containers Preempted: 0
Total Number of AM Containers Preempted: 0
Resource Preempted from Current Attempt: <memory 0, vCores:0=
Number of Non-AM Containers Preempted from Current Attempt: ©
ggreg. 118624 MB. s, 66 il
Show 20 =] entries Search:
Attempt ID - Started) Node # Logs & Blacklisted Nodes
appatlempl 1491681404095 0007 000001 Sun Apr 9 bitpihadoopsiave 8042 Logs LY -
el © Firefox automatically sends some data to Mozilla so that we can improve your experience. Choose what | Share | %

Here elapsed timeis41sec .

We can also browse HDFS web interface to download the output in our local file system from
HDFS

http://hadoopmaster:50070

] Browsing HOFS
€ |2 hadoopmaster

EEEY

File infermation - pari-r-00000

Download

Block information

Black ID: 1073741920
Block Pool 1D: BP-B08931663-192.168.2.130-1491 348367362

Generation Stamp: 1098

¥ B B (3 m)

Size: 163

Avallability:

+ hadoopslavel

P O rircfox automatically sends some data to Mozilla so that we can Improve your experience. Choose What | Share . 3

45

Chapter 6

Result & Discussion

In objective we have said that we want to establish 3 things in this implementation.

i.Thefirst oneis ssh authentication. We wanted to establish a password-less ssh by sharing
public key of muster node and slave node . For that first we had compute public key and then
shared the keys so that transferiing data or starting jobs there occure no difficulties. Now we
want to test whether we could establish remote system through ssh where to communicate with
each other there need no password . For that we will give acommand from MasterNode to
remote access SlaveNode.

root@hadoopmaster: ssh hadoopslavel

Here we can see that we got a remote access of hadoopslavel in hadoopmaster. From
hadoopmaster we can see what jobs are running in hadoopslavel and aso we can access other
contents of hadoopslavel

Now we will try to remote host hadoopmaster from hadoopslavel so that we can confirm that we
have fulfill our first object ssh authentication.

46

root@hadoopslavel: ssh hadoopmaster

o
&
p)
L
B
B
a‘
—'&'
8
&

Here we can see that we got a remote access of hadoopmaster from hadoopslavel without
password. Here we can run the jobs that are supposed to run in hadoopmaster. And also we can
see other contents of hadoopmaster without any password.

Therefore, our first objective isfulfill of our project.

ii. The second one objective was to implement Hadoop cluster successfully. The hadoop cluster
is successfully implemented or not we can check by inspecting the running jobs in Master and
SlaveNode . For that we will follow the following command.

root@hadoopmaster: jps

if NameNode , SecondaryNameNode, ResourceM anager, JobHistoryServer are running in
hadoopmaster then we can say that hadoopmaster is created successfully.

47

root@hadoopslavel: jps

If DataNode, NodeManager are running in hadoopslavel then we can say that hadoopslavel is
successfully created.

)
8
=)
F
B
B
4_.
a]
=

Therefore our second objective of this project is also fulfilled. We have successfully
implemented Hadoop cluster.

iii. The third objective was to run a MapReduce based application successfully. To understand
the implementation of MapReduce on Hadoop cluster we will provide the web interfaces of
Hadoop cluster.

We can see the MapReduce JobHistoryServer web page to identify whether MapReduce
Application success or failed.

http://hadoopmaster: 8088

JobHistory - Moziils Firefox

6 master
‘ = -
LJE -1nElalala]a) JobHistory
1 - Application Retired Jobs
7 s Aboug
Jobs Search
Maps Maps Ao
Fnish o
ﬁ_— » Toals ik job 1D - Name State ¢ Total Completed maerts Com
— 2017.04.09 2017.04.09 2017.04.09 job 1491695628222 0004 word count root default SUCCEEDED 1 1 1 1
06:04:41 06:04:48 06:0%:19
aoT BOT BoT
2017.04.09 2017.04.09 2017.04.09 job 1491695628222 0003 word count root default FAILED o o o o
06:02:21 o6:02:28 06:02:56
[oT BoT BaoT
2017.04.09 2017.04.09 2017.04.09 |ob 1491695628222 0002 word count root default FAILED o a o o
0%3:58:18 05:58:26 03:58:55%
BOT BoT BoT
2017.04.00 2017.04.00 2017.04.09 [pb 1491695626222 0001 word count root default FAILED o a
05:55:18 05:55:30 05:55:58
BOT BDT BOT
2017.04.09 2017.04.09 2017.04.09 job 1491681404095 0007 word count root default SUCCEEDED 1 1 1 1
02:52:14 02:52:22 02:52:53
BOT BOT BoT
2017.04.08 2017.04.08 2017.04.09 ok 1491681404095 0006 word count root defaull FAILED o [}
02:49:43 02:49:50 02:50:17
BOT BDT BOT
2017.04.09 2017.04.09 2017.04.09 job 1491681404095 0005 word count root default FAILED a a o o
02:45:04 02:45:11 0z:4%:42
[noT noT BoT
2017.04.09 2017.04.09 2017.04.09 job 1491681404095 0004 word count root default FAILED o a o o

'l

02:42:10 024218 02:42:47

Here we can see that MapReduce Application (Word Count) SUCCEEDED at the above.

Now we want to confirm if the slave node is running or not through web browser

need to browse the Y ARN ResourceManager.

http://hadoopmaster:8088

MNodes of the cluster - Mozills Firefox

Nodes of the cluster
4 & hadoopmaster t) «C| (B~ coog a Q

Logge
Nodes of the cluster
Cluster Metrics
Apps Apps Apps Apps Containers Memory Memory Memory VCores VCores VCores Active Decommissioned Lost Unhealthy
Submitted Pending Running Completed Running Used Total Reserved Used Total Reserved Nodes Nodes Nodes Nodes
o o o o o on B Ga os o | o 1 1 1]]
Scheduler Metrics
Scheduler Type Scheduling Resource Type Minimum Allecation Maximum Allocation
Capacity scheduler [MEMORY] <memory; 1024, vCores:1> <memory-8192, vCores:B>
Show 20 -] entries Search:
Node Mem Mem
5 Hode a Node HTTP Last health Containers VCores VCores
abels k@ 8 2 Ithe sed | Ava .
Labais Rac| Sate Node Address et 5 i Health-report e Used | msal T G e
defaull k had ! 1:57087 ol 18042 Sun Apr 09 o o8 BGBE © a
12:28:49
40600 2017

Showing 1 to 1 of 1 entries

gl O Firefox avtomatically sends some data to Mozilla so that we can Improve your experience. ChooseWhat IShare | X

Here you can see hadoopslavel Node is RUNNING .

. For that we

Now to confirm the hadoopmaster node is running through web page we need to browse the

HDFS webpage.

http://hadoopmaster:50070

Hamenode informatien - Mozilla Firefox

Namenode information

€ | & hadoopmaster

Hadoop overview Datanodes Datanode Volume Fallures Snapshot Startup Progress Uitilities

Overview n

Started: Sun Apr 09 12:19:49 BOT 2017

Version: 2.7.3, rban91i7cAbcdcha2be 5082 de4 T 1 9c 1cBald L cctf
Compiled: 2016-08-18T01:41Z by reot from branch-2.7.3
Cluster ID; CID-46bB1ba5-292a-481C-bf35-B2540468ba04

Block Pool ID: BP-808931683-192.168.2.130-1491348367362

Summary

Security is off
Safemode i off.

71 files and directories, 35 blocks = 106 total filesystem objectis),

Heap Memory used 72.02 MB of 127 MB Heap Memory. Max Heap Memory is B89 MB.

Non Heap Memory used 31,93 ME of 33.44 MB Commited Non Heap Memaory. Max Non Heap Memory is 130 M8

0 Firefox automatically sends some data to Mozilla so that we can improve your experience. Choose What | Share. %

Here you can see hadoopmaster node is active.

49

Finally we want to seeif the output is created in the HDFS through web browser. For that we
need to browse the HDFS webpage

http://hadoopmaster:50070

Browsing HDFS

{ | @ hadoopmaster

Hadoop Overview Datanodes Snapshot Startup Progress Utilities

Browse Directory

fuserfroot Go!
Permission owner Group Size Last Modified Replication Block Size Name
AW root SUpETgroup 148 MB IR 09 < 2017 01:89:44 “FF BOT 2 128 MB nput
drwrxrx roat supergroup oB T 00 4% 2017 06:05:20 *f3 BOT 0 13 output

Hadoop, 2016

S @ Firefox automatically sends some data to Morilla so that we can improve your experience. Chacse What | Share | %

Now want to see the content of output and also we want to download the output/part-r-00000
file.

Browsing HOFS

€ | @ hadoopmaster

e

File information - part-r-00000

Downlosd

¥ou have chosen Lo open:

| part-r-00000
which is: BIN file (163 bytes)
from: hetp://hadoopsiavel:50075

S EEELD

Would you like to save this file?

B © Fircfox automatically sends some data to Mozilla so that we can Improve your experience. Chaose what | Share | %

Therefore here we proved that our third objective of this project is successful. So we fulfill our
three objective of this project.

Chapter 7

Conclusion & Future Work

7.1 Conclusion

Data are increasing day by day. For processing this large amount of data in low cost and less
time, Hadoop cluster in an effective platform. We have implemented Hadoop cluster in a very
simpler way. We have aso presented MapReduce based application in Hadoop Cluster for
processing data as MapReduce gives privileges to work faster and distributed way. We have
monitored successful implementation of Hadoop cluster by web interfaces. So, our goal was to
give a clear perspective about Hadoop cluster along with MapReduce. Now-a-days many
organizations are hiring Hadoop developer for processing large amount of data. So for stepping
forward in Hadoop field this project work will be very helpful to understand the basic of Hadoop
and the implementation of Hadoop cluster.

7.2 Future Work

We have implemented a small Hadoop cluster which is consist of one master and one slave. In
future we want to implement Hadoop cluster among one slave and multiple slaves. As the master
node RAM is4 GB , in future we want to create master node at least with 8 GB RAM. We have
implemented existing MapReduce application by modifying to understand the mechanism of
MapReduce. But in near future we want to implement our own invention MapReduce application
to understand the mechanism of MapReduce. For that we have a great wish to implement
Adaptive Merge Sort on Hadoop Cluster as MapReduce application. We have chosen Adaptive
Merge sort as an application of MapReduce because in Adaptive Merge Sort there is a
partitioning step which can describe the MapReduce mechanism very nicely .

51

Reference

[1] What is Computer Cluster? - Definition from Techopedia. (2017). Techopedia.com. Retrieved 22
April 2017, from https://www.techopedia.com/definition/6581/computer-cluster

[2] HDFS Architecture Guide . (2017). Hadoop.apache.org. Retrieved 22 April 2017, from
https://hadoop.apache.org/docs/r1.2.1/hdfs design.html

[3] NameNode - Hadoop Wiki. (2017). Wiki.apache.org. Retrieved 22 April 2017, from
https://wiki.apache.org/hadoop/NameNode

[4] DataNode - Hadoop Wiki. (2017). Wiki.apache.org. Retrieved 22 April 2017, from
https://wiki.apache.org/hadoop/DataNode

[5] An Automation Tool for Single-node and Multi-node Hadoop Cluster. (2017). Scialert.net.
Retrieved 9 April 2017, from http: I
[6] Hadoop clusters: Benefits and challenges for big data analytics. (2017). SearchStorage. Retrieved

9 April 2017, from http://searchstorage.techtarget.com/tip/Hadoop-clusters-Benefits-and-
challenges-for-big-data-analytics

[7] Hadoop - Multi Node Cluster. (2017). www.tutorialspoint.com. Retrieved 22 April 2017, from
https://www.tutorialspoint.com/hadoop/hadoop multi node cluster.html

[8]Hedlund, B. (2011). Understanding Hadoop Clusters and the Network. Bradhedlund.com.
Retrieved 9 April 2017, from http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-
and-the-network/

[9] device, H., speed, D., switch,]., Linux, H., array, H., & data, H. (2016). Why does hadoop require SSH

passwordless access - Fibrevillage. Fibrevillage.com. Retrieved 9 April 2017, from

http://fibrevillage.com/storage/627-why-hadoop-require-ssh-passwordless-accesshadoop-

installation

[10] Official, D. (2016). How to Setup Hadoop Multi Node Cluster - Step By Step. Dwbi.org. Retrieved
9 April 2017, from https://dwbi.org/etl/bigdata/183-setup-hadoop-cluster

[11]Apache Hadoop 2.7.3 - MapReduce Tutorial. (2017). Hadoop.apache.org. Retrieved 9 April 2017,

from https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html
[12] Hadoop MapReduce. (2017). www.tutorialspoint.com. Retrieved 22 April 2017, from

https://www.tutorialspoint.com/hadoop/hadoop mapreduce.html
[13] Hadoop Tutorial 1 -- Running WordCount - DftWiki. (2017). Cs.smith.edu. Retrieved 22 April
2017, from http://cs.smith.edu/dftwiki/index.php/Hadoop Tutorial 1 -- Running WordCount

52

