
i

 Hadoop Cluster Implementation
 By

 Aysha Binta Sayed

 ID:2013-1-60-068

 Supervised By

 Dr. Md. Shamim Akhter

 Assistant Professor

 Department of Computer Science and Engineering

 East West University

A project submitted in partial Fullfillment of the Requirements for the Degree of Bachelors

 of Science in Computer Science and Engineering

 to the

 Department of Computer Science and Engineering

 East West University

 Dhaka, Bangladesh

ii

Abstract
Recently, data driven science is an interdisciplinary field to gather, process, manage, analyze and
extract inherit meaning from unstructured data and formulate them as structural information.
Later, that information can be employed in many practical applications to solve real life
problems. Hadoop is an open source data science tool and is able to process large amount of data
sets in distributed manner across cluster of computers (a single server and several worker
machines). Hadoop allows running several tasks in parallel and processing huge amount of
complex data efficiency with respect to time, performance and cost. Thus, learning Hadoop with
its different sub modules is important. This project work covers the implementation of Hadoop
cluster with SSH public key authentication for processing large volumes of data, using cheap,
easily available personal computer hardware (Intel/AMD based pcs) and freely available open
source software (Ubuntu Linux, Apache Hadoop etc). In addition, Mapreduce and Yarn based
distributed applications are ported and tested the cluster’s workability.

iii

Declaration

We hereby declare that, this report was done under CSE497 and has not been submitted
elsewhere for requirement of any degree of diploma or for any purpose except for publication

Aysha Binta Sayed

ID:2013-1-60-068

Department of Computer Science and Engineering

East West University

iv

Letter of Acceptance
I here declare that this thesis is from the students’ own work and best effort of mine, and all other
sources of information used have been acknowledged. This thesis has been submitted with or
approval.

Dr. Md. Shamim Akhter Supervisor

Assistant Professor

Department of Computer Science and Engineering

East West University

Dr. Ahmed Wasif Reza Chairperson

Chairperson and Associate Professor

Department of Computer Science and Engineering

East West University

v

Acknowledgement
First of all, I would like to thank Almighty Allah for giving me the strength and patience.

Then I would like to thank and pay my sincere gratitude to my mentor and thesis coordinator
Dr. Md. Shamim Akhter for supporting me throughout my endeavor with his extensive
knowledge of the related grounds, his tremendous efforts and robustness that compelled me
succeeding endure the ordeals and his extraordinary visions that enthralled me to refine my work
to the finest point.

I also thank my beloved family and friends, for supporting me throughout the time of our
experience that allowed me to able to come up with what I really have today.

vi

Abstract ii

Declaration iii

Letter of Acceptance iv

Acknowledgement v

Chapter 1

Introduction 1-2

1.1 Overview 1

1.2 Motivation 1

1.3 Objective 2

1.4 Scope and limitation 2

1.5 Outline 2

Chapter 2

Computer Cluster 3-4

Chapter 3

Hadoop Cluster 5-12

3.1 Hadoop 5

3.2 Hadoop Architecture 6

3.3 Hadoop Distributed File System 7-8

3.4 YARN 9

3.5 Hadoop Mapreduce 10-11

vii

3.6 Hadoop Cluster 12

Chapter 4

Hadoop Multi-Node Cluster Configuration 13-37

Chapter 5

Implementing MapReduce Application 38-45

Chapter 6

Result & Discussion 46-50

Chapter 7

Conclusion & Future Work 51

7.1 Conclusion 51

7.2 Future Work 51

References 52

1

Chapter 1

Introduction
1.1 Overview

Today’s world is called a world of large data, ranging from some petabytes to zetabytes. Many
applications are dealing with large amount of data and the results should be obtained within a
particular time limit. So, Apache has come with an appropriate framework to handle large data.
The framework is Hadoop. It enables a number of applications to work with many computational
independent machines and large datasets. Many leading companies like Yahoo, Facebook are
using Hadoop, nowadays. Using a simple programming model, Apache has developed a
framework for distributed processing of large datasets across the many computers or clusters of
computers. The framework is Apache Hadoop software library. A Hadoop cluster can be scaled
up to thousands of machines and offer separate computation and storage in each single machine.
Hadoop itself has the capability to detect and handle failure jobs.

Map/Reduce (MapReduce) is a computational paradigm implemented on Hadoop. MapReduce is
a job manager and divides jobs/applications into smaller fragments to execute them in
computational nodes in parallel. Hadoop supports HDFS (Hadoop Distributed File System) to
store data on computational nodes. Both MapReduce and HDFS are designed to support fault
tolerance system and able to handle failure nodes automatically. Hadoop cluster is able to boost
the processing speed of data driven application. It is highly scalable as additional computational
nodes can be added to increase the throughput. Hadoop has the ability to resist from task failure
because each piece of processing data is copied onto other computational nodes and they
confirms not to loss data even the corresponding node fails. Hadoop cluster can be implemented
with only a single-node or using multi-nodes. Single-node Hadoop is the basic form. In multi-
noded Hadoop, there is one master node and several computational nodes. Master node consists
NameNode , ResourceManager, JobhistoryServer and each computing node consist DataNode
and NodeManager. This project work covers the implementation of Hadoop cluster with SSH
public key authentication for processing large volumes of data, using cheap, easily available
personal computer hardware (Intel/AMD based PCs) and freely available open source software
(Ubuntu Linux, Apache Hadoop etc). In addition, MapReduce and Yarn based distributed
applications are ported and tested the cluster’s workability.

1.2 Motivation

Future data scientist needs to learn the tools to analyze, process and visualize data. Hadoop
provides a compact tool to fulfill the above requirements and also use distributed processing to
implement the jobs. Thus, learning Hadoop covers two different data science domains
knowledge including:

2

 Distributed processing and distributed environment.
 Data visualization and analytics.

1.3 Objective

The main objective of this project is to implement a complete Hadoop cluster using SSH key
authentication. The sub objectives are as follows: -

 Design, implement and test the cluster computer connection with SSH key
authentication.

 Implement and test the Hadoop tool on cluster master and slaves.
 Import a Yarn and MapReduce based applications and monitor their runtime

environment through web based system.

1.4 Scope and limitation

Scope :

The use of Hadoop cluster might result in count word occurrences, search word, compute
mathematical function of huge amount of data. We can put these huge data in Hadoop distributed
file system instead of local computer system. As the work is distributed among parallel nodes, it
takes less time to process large amount of data. MapReduce based applications can run on this
Hadoop cluster.

Limitation:

Our implementation of Hadoop cluster can work only on broadband link, not able to work in
wireless system. Also the computer RAM is 4 GB which is not sufficient for Hadoop cluster.

1.5 Outline

 Chapter 2, which contains a brief overview on computer cluster.
 Chapter 3, which contains a brief overview on Hadoop , Hadoop Architecture, Hadoop

Distributed File System, Hadoop MapReduce, Hadoop Cluster
 The implementation of Hadoop cluster is discussed in Chapter 4 and will give a clear

view about cluster behavior. In this chapter we are using screen shot of every command
output after execution to make things easier.

 Chapter 5 covers implementing MapReduce program on Hadoop Cluster.
 Chapter 6 covers result and discussion of fulfilling the goal of our objective.
 Chapter 7 is all about conclusion and future work.

3

Chapter 2

Computer Cluster

A computer cluster is a single logical unit consisting of multiple computers that are linked
through a LAN. The networked computers essentially act as a single, much more powerful
machine. A computer cluster provides much faster processing speed, larger storage capacity,
better data integrity, superior reliability and wider availability of resources.

Computer clusters are, however, much more costly to implement and maintain. These results in
much higher running overhead compared to a single computer.

Many organizations use computer clusters to maximize processing time, increase database
storage and implement faster data storing & retrieving techniques.

4

There are many types of computer clusters, including:

• Load-balancing clusters
• High availability (HA) clusters
• High performance (HP) clusters

The major advantages of using computer clusters are clear when an organization requires large
scale processing. When used this way, computer clusters offer:

• Cost efficiency: The cluster technique is cost effective for the amount of power and
processing speed being produced. It is more efficient and much cheaper compared to
other solutions like setting up mainframe computers.

• Processing speed: Multiple high-speed computers work together to provided unified
processing, and thus faster processing overall.

• Improved network infrastructure: Different LAN topologies are implemented to form
a computer cluster. These networks create a highly efficient and effective infrastructure
that prevents bottlenecks.

• Flexibility: Unlike mainframe computers, computer clusters can be upgraded to enhance
the existing specifications or add extra components to the system.

• High availability of resources: If any single component fails in a computer cluster, the
other machines continue to provide uninterrupted processing. This redundancy is lacking
in mainframe systems.

5

Chapter 3

Hadoop Cluster
3.1 Hadoop

Hadoop is an open source, Java-based programming framework that supports the processing and
storage of extremely large data sets in a distributed computing environment. It is part of the
Apache project sponsored by the Apache Software Foundation.

Hadoop makes it possible to run applications on systems with thousands of commodity hardware
nodes, and to handle thousands of terabytes of data. Its distributed file system facilitates rapid
data transfer rates among nodes and allows the system to continue operating in case of a node
failure. This approach lowers the risk of catastrophic system failure and unexpected data loss,
even if a significant number of nodes become inoperative. Consequently, Hadoop quickly
emerged as a foundation for big data processing tasks, such as scientific analytics, business and
sales planning, and processing enormous volumes of sensor data, including from internet of
things sensors.

Hadoop was created by computer scientists Doug Cutting and Mike Cafarella in 2006 to support
distribution for the Nutch search engine. It was inspired by Google's MapReduce, a software
framework in which an application is broken down into numerous small parts. Any of these
parts, which are also called fragments or blocks, can be run on any node in the cluster. After
years of development within the open source community, Hadoop 1.0 became publically
available in November 2012 as part of the Apache project sponsored by the Apache Software
Foundation.

Hadoop framework includes following four models:

Hadoop Common: Hadoop common is Java libraries and utilities, which are required by
otherHadoop modules. They provide filesystem and OS level abstractions and contains the
necessary Java files and scripts required to start Hadoop.
Hadoop YARN: Hadoop YARN is a framework which is used for job scheduling and cluster
resource management.
Hadoop Distributed File System (HDFS): A distributed file system that provides high
throughput access to application data.
HadoopMapReduce: HadoopMapReduce is a YARN-based system for parallel processing of
large data sets.

6

3.2 Hadoop Architecture

Hadoop offers a scalable, flexible and reliable distributed computing big data framework for a
cluster of systems with storage capacity and local computing power by leveraging commodity
hardware. Hadoop follows a Master Slave architecture for the transformation and analysis of
large datasets using HadoopMapReduce paradigm. The 3 important Hadoop components that
play a vital role in the Hadoop architecture are -

i. Hadoop Distributed File System (HDFS) – Patterned after the UNIX file system
ii. HadoopMapReduce

iii. Yet Another Resource Negotiator (YARN)

There are mainly five building blocks inside this runtime environment (from bottom to top):

• Cluster is the set of host machines (nodes). Nodes may be partitioned in racks. This
is the hardware part of the infrastructure.

• YARN Infrastructure (Yet Another Resource Negotiator) is the framework
responsible for providing the computational resources (e.g., CPUs, memory, etc.)
needed for application executions. Two important elements are:

 Resource Manager (one per cluster) is the master. It knows where the
slaves are located (Rack Awareness) and how many resources they have.
It runs several services; the most important is the Resource Scheduler
which decides how to assign the resources.

7

 Node Manager (many per cluster) is the slave of the infrastructure. When
it starts, it announces itself to the Resource Manager. Periodically, it sends
a heartbeat to the Resource Manager. Each Node Manager offers some
resources to the cluster. Its resource capacity is the amount of memory and
the number of cores. At run-time, the Resource Scheduler will decide how
to use this capacity: a Container is a fraction of the NM capacity and it is
used by the client for running a program

• HDFS Federation is the framework responsible for providing permanent, reliable and
distributed storage. This is typically used for storing inputs and output (but not
intermediate ones).

• Other alternative storage solutions. For instance, Amazon uses the Simple Storage
Service (S3).

• The MapReduce Framework is the software layer implementing the MapReduce
paradigm.

3.3 Hadoop Distributed File System

A file on HDFS is split into multiple bocks and each is replicated within the Hadoop cluster. A
block on HDFS is a blob of data within the underlying file system with a default size of
64MB.The size of a block can be extended up to 256 MB based on the requirements.

Image Credit :Apache.org

8

Hadoop Distributed File System (HDFS) stores the application data and file system metadata
separately on dedicated servers. NameNode and DataNode are the two critical components of the
Hadoop HDFS architecture. Application data is stored on servers referred to as DataNodes and
file system metadata is stored on servers referred to as NameNode. HDFS replicates the file
content on multiple DataNodes based on the replication factor to ensure reliability of data. The
NameNode and DataNode communicate with each other using TCP based protocols. For the
Hadoop architecture to be performance efficient, HDFS must satisfy certain pre-requisites –

 All the hard drives should have a high throughput.
 Good network speed to manage intermediate data transfer and block

replications.

• NameNode

NameNode is the center of HDFS file system. NameNode does not store data itself but it
tracks where during the cluster the data file is held. When client wish to locate a file or want
to add/copy/move/delete a file, they contact to the NameNode. Then the NameNode return
the list of relevant DataNodes servers where the data are located and like this NameNode
gives the successful responds of client’s request. The HDFS file system is highly rely on
NameNode. If the NameNode goes down then the file system also goes offline. There is an
secondaryNameNode which also can be hosted on a separate machine. Secondary
NameNode only creates checkpoints of the Namespace by merging the edits file into the
fsimage file. The NameNode stores file system metadata into two different files. One is the
fsimage and the other is the edit log.

 The fsimage file stores a complete snapshot of the file system’s metadata at a specific
moment in time.

 The edit log stores the incremental changes such as renaming or appending a few bytes to
a file for durability.

When the NameNode starts, fsimage file is loaded and then the contents of the edits file are
applied to recover the latest state of the file system. The only problem with this is that over the
time the edits file grows and consumes all the disk space resulting in slowing down the restart
process. If the Hadoop cluster has not been restarted for months together then there will be a
huge downtime as the size of the edits file will be increase.

DataNode

In Hadoop Distribute File System, DataNode store the actual data. When Hadoop cluster is
starts, DataNode connects to the NameNode. Then DataNode gives responds to the request of
NameNode fro filesystem operations. Once NameNode provide the location of the data to the
client, client application can talk directly to a DataNode.

9

3.4 Yarn

 YARN (Yet Another Resource Negotiator) is a cluster management technology.YARN is one of
the key features in the second-generation Hadoop 2 version of the Apache Software Foundation's
open source distributed processing framework. Originally described by Apache as a redesigned
resource manager, YARN is now characterized as a large-scale, distributed operating system for
big data applications.

The YARN infrastructure and the HDFS federation are completely decoupled and independent:
the first one provides resources for running an application while the second one provides storage.
The MapReduce framework is only one of many possible framework which runs on top of
YARN (although currently is the only one implemented).

YARN: Application Startup

In YARN, there are at least three actors:

• Job Submitter (the client)
• Resource Manager (the master)
• Node Manager (the slave)

The application startup process is the following:

1. a client submits an application to the Resource Manager
2. the Resource Manager allocates a container
3. the Resource Manager contacts the related Node Manager
4. the Node Manager launches the container
5. the Container executes the Application Master

10

The Application Master is responsible for the execution of a single application. It asks for
containers to the Resource Scheduler (Resource Manager) and executes specific programs (e.g.,
the main of a Java class) on the obtained containers. The Application Master knows the
application logic and thus it is framework-specific. The MapReduce framework provides its own
implementation of an Application Master.

The Resource Manager is a single point of failure in YARN. Using Application Masters, YARN
is spreading over the cluster the metadata related to running applications. This reduces the load
of the Resource Manager and makes it fast recoverable.

3.5 Hadoop MapReduce

The execution of a MapReduce job begins when the client submits the job configuration to the
Job Tracker that specifies the map, combine and reduce functions along with the location for
input and output data. On receiving the job configuration, the job tracker identifies the number of
splits based on the input path and select Task Trackers based on their network vicinity to the data
sources. Job Tracker sends a request to the selected Task Trackers.

The processing of the Map phase begins where the Task Tracker extracts the input data from the
splits. Map function is invoked for each record parsed by the “InputFormat” which produces
key-value pairs in the memory buffer. The memory buffer is then sorted to different reducer
nodes by invoking the combine function. On completion of the map task, Task Tracker notifies
the Job Tracker. When all Task Trackers are done, the Job Tracker notifies the selected Task
Trackers to begin the reduce phase. Task Tracker reads the region files and sorts the key-value
pairs for each key. The reduce function is then invoked which collects the aggregated values into
the output file.

MapReduce is a framework using which we can write applications to process huge amounts of
data, in parallel, on large clusters of commodity hardware in a reliable manner.

MapReduce is a processing technique and a program model for distributed computing based on
java. The MapReduce algorithm contains two important tasks, namely Map and Reduce. Map
takes a set of data and converts it into another set of data, where individual elements are broken

11

down into tuples (key/value pairs). Secondly, reduce task, which takes the output from a map as
an input and combines those data tuples into a smaller set of tuples. As the sequence of the name
MapReduce implies, the reduce task is always performed after the map job.

The major advantage of MapReduce is that it is easy to scale data processing over multiple
computing nodes. Under the MapReduce model, the data processing primitives are called
mappers and reducers. Decomposing a data processing application into mappers and reducers is
sometimes nontrivial. But, once we write an application in the MapReduce form, scaling the
application to run over hundreds, thousands, or even tens of thousands of machines in a cluster is
merely a configuration change. This simple scalability is what has attracted many programmers
to use the MapReduce model.

Algorithm:

• Generally MapReduce paradigm is based on sending the computer to where the data
resides!

• MapReduce program executes in three stages, namely map stage, shuffle stage, and
reduce stage.

o Map stage : The map or mapper’s job is to process the input data. Generally the
input data is in the form of file or directory and is stored in the Hadoop file
system (HDFS). The input file is passed to the mapper function line by line. The
mapper processes the data and creates several small chunks of data.

o Reduce stage : This stage is the combination of the Shuffle stage and the Reduce
stage. The Reducer’s job is to process the data that comes from the mapper. After
processing, it produces a new set of output, which will be stored in the HDFS.

• During a MapReduce job, Hadoop sends the Map and Reduce tasks to the appropriate
servers in the cluster.

• The framework manages all the details of data-passing such as issuing tasks, verifying
task completion, and copying data around the cluster between the nodes.

• Most of the computing takes place on nodes with data on local disks that reduces the
network traffic.

• After completion of the given tasks, the cluster collects and reduces the data to form an
appropriate result, and sends it back to the Hadoop server.

12

3.6 Hadoop Cluster

A Hadoop cluster is a special type of computational cluster which is designed specially for
storing and analyzing large amounts of unstructured data in a distributed computing
environment. Hadoop cluster can be implemented through Hadoop open source distributed
software (which is free) on low cost commodity computers. Typically one machine is create as a
Master Node and other machines are creates as Slave Nodes. In a small cluster there should be at
least one muster and one slave. Master Node is consist of NameNode, SecondaryNameNode,
ResourceManager, JobHistoryServer. These jobs run as a java process in Hadoop cluster. On the
other hand, Slave Node consists of DataNode and NodeManager. These jobs also run as a java
process in Hadoop cluster. There are two types of Hadoop cluster. One is single node Hadoop
cluster and another is multi-node Hadoop cluster. In chapter 4, we will implement multi-node
Hadoop cluster.

13

Chapter 4

Hadoop Multi-Node Cluster Configuration
This chapter explains the set up of the Hadoop Multi -Node cluster on a distributed environment.

As the whole cluster cannot be demonstrated we are explaining the Hadoop cluster environment
using two systems (one master and one slave); given below are their IP addresses.

• Hadoop Master: 192.168.2.130 (hadoopmaster)
• Hadoop Slave: 192.168.2.131 (hadoopslave1)

Follow the steps given below to have Hadoop Multi-Node cluster set up.

• Hadoop Version
Hadoop-2.7.3

• Operating System Used
Linux (Ubuntu , Version 14.04)

Creating The hadoopmaster

• Installing JAVA

Java is the main prerequisite for Hadoop. First of all, you should verify the existence of java in
your system using “ java -version” . The syntax of java version command is given below.

root@hadoopmaster:~# java -version

If there is no java installs in your system then you shall get the following option to install java .

14

Now let us update the system & install Oracle java 1.7. During the installation, if it prompts for a
configuration, press Y.

root@hadoopmaster:~# apt-get update

root@hadoopmaster:~# apt-get install oracle-java7-installer

Here occurs an error during the installation. So for installing the java we need to give the
following command

root@hadoopmaster:~# add-apt-repository ppa:webupd8team/java

Now again update the system by giving the following command

root@hadoopmaster:~# apt-get update

Now again give the command

15

root@hadoopmaster:~# apt-get install oracle-java7-installer

Now check whether the installation is complete or not by giving the following command

root@hadoopmaster:~# java -version

Output looks like below

16

• Installing ssh

Hadoop requires ssh access to manage its nodes for remotely controlling or transferring files
between nodes. For installing ssh give the following command.

root@hadoopmaster:~# apt-get install openssh-server

Write yes and wait until the installation is complete.

• Mapping the nodes :

root@hadoopmaster:~# vi /etc/hosts

Enter the following lines in the /etc/hosts files.

192.168.2.130 hadoopmaster

192.168.2.131 doopslave1

17

• Download and Install Hadoop distribution

First of all check Latest Stable Hadoop Realise Available at:
http://hadoop.apache.org/releases.html . In this configuration we are downloading and installing
Hadoop-2.7.3 . We will install it under /usr/local/ directory. After that we will also create few
additional directories like namenode for hadoop to store all namenode information and
namesecondary to store the checkpoints images.

root@hadoopmaster:~# cd /usr/local

root@hadoopmaster:/usr/local/# wget http://www-
eu.apache.org/dist/hadoop/core/stable2/hadoop-2.7.3.tar.gz

root@hadoopmaster:/usr/local/# tar –xzvf hadoop-2.7.3.tar.gz >> /dev/null

root@hadoopmaster:/usr/local/# mv hadoop-2.7.3 /usr/local/hadoop

root@hadoopmaster:/usr/local/# mkdir -p /usr/local/hadoop_work/hdfs/namenode

root@hadoopmaster:/usr/local/# mkdir -p /usr/local/hadoop_work/hdfs/namesecondary

• Setup Environment Variables

We shall setup some environment variables in .bashrc so that every time we restart our machines,
it knows where to find Java or Hadoop installation location inside the machine. To do this first,
we need to find out where JAVA has been installed. According to this Configuration java has
been installed within one of the subdirectories under /usr/lib/jvm/ directory. So we need to go to
the location and confirm that java is there.

18

For that write the following command in the terminal .

root@hadoopmaster:/usr/local/# cd /usr/lib/jvm/java-7-oracle/jre

root@hadoopslave1:/usr/lib/jvm/java-7-oracle/jre# java –version

The above output shows that Java is there inside the default-java directory

Now open .bashrc and put these lines at the end of your .bashrc file

root@hadoopmaster:/usr/lib/jvm/java-7-oracle/jre# vi ~/.bashrc

And put these lines at the end of your .bashrc file

export JAVA_HOME=/usr/lib/jvm/java-7-oracle/jre
export PATH=$PATH:$JAVA_HOME/bin
export HADOOP_CLASSPATH=/usr/lib/jvm/java-7-oracle/lib/tools.jar
export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
export CLASSPATH=$CLASSPATH:/usr/local/hadoop/lib/*:.
export HADOOP_OPTS="$HADOOP_OPTS -Djava.security.egd=file:/dev/../dev/urandom"

19

After setup the environment variable in the .bashrc :

Verify .bashrc by writing the following commands

root@hadoopmaster:/usr/local/# $echo $JAVA_HOME

root@hadoopmaster:/usr/local/# $echo $HADOOP_HOME

• Configuring Password-less & Passphrase-less Login

Hadoop provide scripts (e.g. start-mapred.sh and start-dfs.sh). Use ssh in order to start and stop
the various daemons and some other utilities. To work seamlessly, ssh need to be setup to allow
password-less & passphrase-less login for the root/hadoop user from machines in the cluster.
The simplest way to achieve this is to generate a public/private key pair, and it will be shared
across the cluster.

20

Now check that you can ssh to the localhost without passphrase .

root@hadoopmaster:/usr/local/# ssh localhost

If you cannot ssh to localhost without a passphrase, generate an ssh key for the root user

root@hadoopmaster:~# ssh-keygen -t rsa -P ""

If prompted for SSH key file name, Enter file in which to save the key (/root/.ssh/id_rsa) and
press ENTER. Next put the key to authorized_keys directory for future password-less access.

root@hadoopmaster:~# cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_keys

root@hadoopmaster:~# chmod 700 ~/.ssh

root@hadoopmaster:~# chmod 600 ~/.ssh/authorized_keys

Connect and validate ssh password-less login to localhost.

21

• Confirm Hadoop is installed

At this point, we should confirm if hadoop command is accessible from the terminal

root@hadoopmaster:/usr/lib/jvm/java-7-oracle/jre# cd $HADOOP_HOME/etc/hadoop

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# hadoop version

#output looks like below

• Configuring the hadoopmaster

You have to configure some Hadoop server files so that we can start the Hadoop Cluster. These
configuration files are located under /usr/local/hadoop/etc/hadoop folder. In this configuration
we will use YARN as the cluster management framework.

22

Among all this configuration files we will configure some minimal configuration files just to get
us started on the Hadoop Cluster. Here is a description why we configure these files.

Configuration
Filenames Description of Log Files

hadoop-env.sh Environment variables that are used in the scripts to run Hadoop.

core-site.xml Configuration Settings for Hadoop Core such as I/O settings that are
common to HDFS and MapReduce

hdfs-site.xml Configuration settings for HDFS daemons, the NameNode, the
SecondaryNameNode and the DataNode

mapred-site.xml Configure settings for run as Yarn application and MapReduce
daemons : JobHistoryServer

yarn-site.xml Configure settings for Yarn daemons : the ResourceManager and the
NodeManager

masters A list of machines(one per line) that each run a NameNode
&SecondaryNameNode

slaves A list of machines(one per line) that each run a DataNode and
NodeManager

• Configure hadoop-env.sh

One of the important environment variable for Hadoop daemon is $JAVA_HOME in hadoop-
env.sh. This variable direct Hadoop daemon to the Java path in the system. From the base of
Hadoop installation path (e.g. /usr/local/hadoop), open the etc/hadoop/hadoop-env.sh file,

root@hadoopmaster:/usr/lib/jvm/java-7-oracle/jre# vi /usr/local/hadoop/etc/hadoop/hadoop-
env.sh

Inside the file, find the line export JAVA_HOME=${JAVA_HOME}. Replace the line like
below
export JAVA_HOME=/usr/lib/jvm/java-7-oracle/jre

23

• Configure core-site.xml

From the base of Hadoop installation path (e.g. /usr/local/hadoop), edit the etc/hadoop/core-
site.xml file. The original installed file will have no entrees other than the <configuration>
</configuration> tags. There are two properties that need to be set. The first is the fs.defaultFS
property that sets the host and request port for the hadoopmaster (Metadata server for HDFS).
The second is io.file.buffer.size, which is the size of read/write buffer used in sequenceFiles.
Open the core-site. xml from the terminal by giving the following command.

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi core-site.xml

Copy the following lines and remove the original empty <configuration> </configuration> tags.

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://NameNode:8020/</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property>
</configuration>

• Configure hdfs-site.xml

From the base of the Hadoop installation path, edit the etc/hadoop/hdfs-site.xml. In hdfs-site.xml
we specify where is the name node directory (which we created previously at the end of Hadoop
installation) and how many backup copies of the data files to be created in the system (called
replication) inside the file under the configuration tag. Open the hdfs-site xml from the terminal
by giving the following command.

24

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi hdfs-site.xml

Copy the following lines and remove the original empty <configuration> </configuration> tags.

<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/usr/local/hadoop_work/hdfs/namenode</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/usr/local/hadoop_work/hdfs/datanode</value>
</property>
<property>
<name>dfs.namenode.checkpoint.dir</name>
<value>file:/usr/local/hadoop_work/hdfs/namesecondary</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.block.size</name>
<value>134217728</value>
</property>
</configuration>

• Configure mapred-site.xml

From the base of the Hadoop installation, edit the etc/hadoop/mapred-site.xml file. In this install
we will use the value of “yarn” to tell MapReduce that it will run as a YARN application. Also
we will configure the MapReduce Job History Server. First, copy the template file to the mapred-
site.xml.

25

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# cp mapred-site.xml.template mapred-site.xml

Then open the mapred-site.xml from terminal by giving the following command

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi mapred-site.xml

Next, copy the following lines and and remove the original empty <configuration>
</configuration> tags.

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoopmaster:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoopmaster:19888</value>
</property>
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user/app</value>
</property>
<property>
<name>mapred.child.java.opts</name>
<value>-Djava.security.egd=file:/dev/../dev/urandom</value>
</property>
</configuration>

26

• Configure yarn-site.xml

From the base of the Hadoop installation, edit the etc/hadoop/yarn-site.xml file. In this
configuration we setup YARN site specific properties for Resource Manager & Node Manager.
Open the file :

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi yarn-site.xml

Copy the following to the Hadoop etc/hadoop/yarn-site.xml file and remove the original empty
<configuration> </configuration> tags.

<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoopmaster</value>
</property>
<property>
<name>yarn.resourcemanager.bind-host</name>
<value>0.0.0.0</value>
</property>
<property>
<name>yarn.nodemanager.bind-host</name>
<value>0.0.0.0</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>file:/usr/local/hadoop_work/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>file:/usr/local/hadoop_work/yarn/log</value>
</property>
<property>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>hdfs://hadoopmaster:8020/var/log/hadoop-yarn/apps</value>
</property>
</configuration>

27

yarn-site.xml

• Setup the masters

From the base of the Hadoop installation, edit the etc/hadoop/masters . The masters file at Master
server contains a hostname of Secondary Name Node servers. We will configure hadoopmaster
as the host name of secondary name node. Open the terminal

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi masters

Inside the file, put one line:
hadoopmaster

28

• Setup the slaves

From the base of the Hadoop installation, edit the etc/hadoop/slaves. The slaves file at Master
node contain a list of host, one per line, that are to host of DataNode and NodeManager servers.
Here we define hadoopslave1 as the host of DataNode and NodeManager . Open the terminal:

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# vi slaves

Inside the file put one line:

hadoopslave1

Creating The hadoopslave1

• Installing JAVA in hadoopslave1

root@hadoopslave1:~# apt-get update

root@hadoopslave1:~# add-apt-repository ppa:webupd8team/java

root@hadoopslave1:~# apt-get update

root@hadoopslave1:~# apt-get install oracle-java7-installer

• Installing ssh

root@hadoopslave1:~# apt-get install openssh-server

• Mapping the nodes :

root@hadoopslave1:~# vi /etc/hosts

Enter the following lines in the /etc/hosts files.

29

192.168.2.130 hadoopmaster

192.168.2.131 hadoopslave1

• Setup Environment Variables

Open the .bashrc file

root@hadoopslave1:~# vi ~/.bashrc

And put these lines at the end of your .bashrc file

export JAVA_HOME=/usr/lib/jvm/java-7-oracle/jre
export PATH=$PATH:$JAVA_HOME/bin
export HADOOP_CLASSPATH=/usr/lib/jvm/java-7-oracle/lib/tools.jar
export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
export CLASSPATH=$CLASSPATH:/usr/local/hadoop/lib/*:.
export HADOOP_OPTS="$HADOOP_OPTS -Djava.security.egd=file:/dev/../dev/urandom"

• Configuring Password-less & Passphrase-less Login

root@hadoopslave1:~# ssh-keygen -t rsa -P ""

root@hadoopslave1:~# cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_keys

root@hadoopslave1:~# chmod 700 ~/.ssh

root@hadoopslave1:~# chmod 600 ~/.ssh/authorized_keys

• Hadoop Installation

This time we will not install Hadoop from beginning as we have already installed it in the
hadoopmaster . Instead, we will copy the installation directories from the hadoopmaster to the
hadoopslave1. In order to copy the directory, we will first need to include the public key of the
hadoopmaster to the authorized keys of the hadoopslave1 and also the public key of the
hadoopslave1 to the authorized keys of the hadoopmaster so that we can use the SSH file copy
program (scp) for copying.

30

Now copy the public key from hadoopslave1 and paste it to hadoopmaster

root@hadoopmaster:~# cd ~/.ssh

root@hadoopmaster:~/.ssh# vi authorized_keys

 Now paste the public key of hadoopslave1 and then confirm the editing by the following
command.

root@hadoopmaster:~/.ssh# cat authorized_keys

Now copy the public key hadoopmaster and paste it to hadoopslave1

root@hadoopslave1:~# cd ~/.ssh

root@hadoopslave1:~/.ssh# vi authorized_keys

31

root@hadoopslave1:~/.ssh# cat authorized_keys

• Format Name Node on hadoopmaster

We will format the name node before starting anything now.

root@hadoopmaster:/usr/local/hadoop/etc/hadoop# /usr/local/hadoop/bin/hadoop namenode -
format

To check whether namenode has fomat give the command again and you should see Re-
format filesystem in storage Directory /usr/local/hadoop_work/namenode. Always give no
command for re-format. This means the namenode format has been done successfully.

32

• start HDFS services

It’s time to start the Hadoop Distributed File System in the hadoopmaster as well as the
hadoopslave1 in the Hadoop Cluster.

root@hadoopmaster:/usr/local# $HADOOP_HOME/sbin/start-dfs.sh

After the command executed you should see NameNode and SecondaryNameNode started as
java process in hadoopmaster and DataNode as java process in hadoopslave1.To check whether
the services are running or not give a jps command on both hadoopmaster and hadoopslave1 .

root@hadoopmaster:/usr/local# jps

root@hadoopslave1:/usr/local# jps

If the process did not start, it may be helpful to inspect the log files.

33

All Hadoop services can be stopped using the following command.

root@hadoopmaster:/usr/local# $HADOOP_HOME/sbin/stop-dfs.sh

Once the Namenode & Datanodes starts successfully, we have to create few directories in
hadoop filesystem which has been listed in our site specific configuration files. These HDFS
directories will be used by YARN MapReduce Staging, YARN Log & JobHistoryServer.

root@hadoopmaster:/usr/local# hadoop fs -mkdir /tmp
root@hadoopmaster:/usr/local# hadoop fs -chmod -R 1777 /tmp

root@hadoopmaster:/usr/local# hadoop fs -mkdir /user
root@hadoopmaster:/usr/local# hadoop fs -chmod -R 1777 /user

root@hadoopmaster:/usr/local# hadoop fs -mkdir /user/app
root@hadoopmaster:/usr/local# hadoop fs -chmod -R 1777 /user/app

root@hadoopmaster:/usr/local# hadoop fs -mkdir -p /var/log/hadoop-yarn
root@hadoopmaster:/usr/local# hadoop fs -chmod -R 1777 /var/log/hadoop-yarn

root@hadoopmaster:/usr/local# hadoop fs -mkdir -p /var/log/hadoop-yarn/apps
root@hadoopmaster:/usr/local# hadoop fs -chmod -R 1777 /var/log/hadoop-yarn/apps

Now Verify the HDFS File Structure

root@hadoopmaster:/usr/local# hadoop fs -ls -R /

Output should look like below:

34

• start YARN services

After HDFS services started, YARN services need to be started.

root@hadoopmaster:/usr/local# $HADOOP_HOME/sbin/start-yarn.sh

 ResourceManager in hadoopmaster and NodeManager in hadoopslave must be started.
To check whether the services are running or not give a jps command on both hadoopmaster and
hadoopslave1 .

root@hadoopmaster:/usr/local# jps

root@hadoopslave1:/usr/local# jps

35

• start MapReduce HistoryServer

Before starting the HistoryServer quickly edit the $HADOOP_HOME/etc/hadoop/mapred-
site.xml in the hadoopmaster. Replace the hostname in the value for the property names as below
from hadoopmaster to 0.0.0.0:
mapreduce.jobhistory.address from hadoopmaster:10020 to 0.0.0.0:10020
mapreduce.jobhistory.webapp.address from hadoopmaster:19888 to 0.0.0.0:19888

Now run the below command if it runs well you should see JobHistoryServer in hadoopmaster .
root@hadoopmaster:/usr/local# $HADOOP_HOME/sbin/mr-jobhistory-daemon.sh start
historyserver
Finally see all the daemons running in the hadoopmaster as well as the hadoopslave1.

root@hadoopmaster:/usr/local# jps

root@hadoopslave1:/usr/local# jps

Now the cluster is set up and running .

36

• Verify the running services using the Web Interface

Let us check the cluster status in the web browser. HDFS, ResourceManager & HistoryServer
have a web interface. To monitor HDFS enter the following web address:

http://192.168.2.130:50070

To monitor ResourceManager enter the following address:

http://192.168.2.130:8088

37

To monitor HistoryServer enter the following address:

http://192.168.2.130:19888

Finally to test installation we will run sample MapReduce example. We will run the sample “pi”
program that calculate the value of pi.

root@hadoopmaster:/usr/local# hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-
mapreduce-examples-2.7.3.jar pi 2 4

If the program worked correctly, the following should be displayed at the end of the program
output stream. Estimated value of pi is 3.50000000000000000000

38

Chaprter 5

Implementing MapReduce Application
MapReduce is known as a core component of the Apache Hadoop software framework.
MapReduce is define as a framework using MapReduce we can implement applications to
process huge amounts of data on Hadoop Cluster. MapReduce can be define as a processing
technique and a program model for distributed computing which is based on java.

A MapReduce Application is consist of three class.

i. Mapper class
ii. Reducer class
iii. Driver class

Mapper class: The Mapper class reads the input files as <key1,value1> pair and then split the
words and finally give the output as <key2,value2> pair to the reducer.

Reducer class: The Reducer class read the output of Mapper class as <key2,value2> pair and
combine them. Finally give the output to Hadoop Cluster as <key3,value3>.

Driver class: The Driver class is used to build the configuration of the job and then submit the
job to the Hadoop cluster. Also the Driver class contains the main() method and the main()
method accepts argument from the command line.

Example :WordCount

Here, we take an example of WordCount MapReduce application to get a flavor of how
MapReduce work. We implementing WordCount as a simple application that is used to search
word and count the number of occurrences of that search word in a given input data.

Set Environment Variables:

We assume that environment variables are set as given below in hadoop multi-node cluster.

export JAVA_HOME=/usr/lib/jvm/java-7-oracle/jre
export PATH=/usr/lib/jvm/java-7-oracle/lib/tools.jar
export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar

As we have not installed jdk so the tools.jar in not in the default JAVA_HOME/lib/ . We have
installed jre so the tools.jar present at /usr/lib/jvm/java-7-oracle/lib/tools.jar

In case you have not install jdk so insure the path of tools.jar otherwise javac command will not
executed because of mentioning wrong path of tools.jar at .bashrc file.

39

Input Data

We have taken an Ebook Ulysses by James Joyce for tesing WordCount program. This input file
contains 268,030 words. The input file looks as shown below:

Source Program: WordCount.java

import java.io.File;
import java.io.IOException;
import java.util.Scanner;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {
 public static class WordMapper extends Mapper<LongWritable, Text, Text, LongWritable> {

public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
 Configuration confWithValue = context.getConfiguration();
 String searchValue = confWithValue.get("val");
 String[] splitSearchValue = searchValue.split(",");

 for(String splitValue : splitSearchValue) {
 context.write(new Text(splitValue.toLowerCase()), new LongWritable(0)); }

40

 String line = value.toString();
 String[] words = line.split(" ");
 for (String word : words) {
 for(String splitValue : splitSearchValue) {
 if (word.equalsIgnoreCase(splitValue)) {
 context.write(new Text(word.toLowerCase()), new LongWritable(1));

 }
 }
 }
 }
 }

public static class WordReducer extends Reducer<Text, LongWritable, Text, LongWritable> {

 public void reduce(Text key, Iterable<LongWritable> values, Context context)
 throws IOException, InterruptedException {
 long sum = 0;
 for (LongWritable val : values) {
 sum += val.get();
 }
 context.write(key, new LongWritable(sum));
 }
 }

public static void main(String[] args) throws Exception {

 String searchKey = "";
 Scanner scanner;
 int i = 0;
 scanner = new Scanner(new File("search_key.txt"));
 while (scanner.hasNext()) {
 if (i == 0) {
 searchKey = scanner.next();
 }else {
 searchKey += "," + scanner.next();
 }
 i++;
 }

 Configuration conf = new Configuration();
 conf.set("val", searchKey);

 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(WordMapper.class);
 job.setCombinerClass(WordReducer.class);
 job.setReducerClass(WordReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(LongWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

41

Compilation and Execution

Let us assume we are in the /usr/local directory where we have install Hadoop on Hadoop multi-
node cluster.

Follow the steps in order to compile and execute above program.

Step 1

The following command is to create an input file in your local system.

root@hadoopmaster:/usr/local# vi input

Step 2

The following command is to copy the input data from your local system to HDFS .

root@hadoopmaster:/usr/local# hadoop fs –put input

Step 3

The following command is to check whether the input file is copied to HDFS or not.

root@hadoopmaster:/usr/local# hadoop dfs -ls

42

Step 4
The following command is to create a search file in which is consisting of list of word for
searching in input file. The search file should be creating your local system where you would
create your source code.

root@hadoopmaster:/usr/local# vi search_key.txt

Step 5

The following command is to create .java file in your local system.

root@hadoopmaster:/usr/local# vi WordCount.java

Now copy the above code in this file.

Step 6

The following commands are used for compiling the WordCount.java program and creating a
jar for the program.

root@hadoopmaster:/usr/local# hadoop com.sun.tools.javac.Main WordCount.java

root@hadoopmaster:/usr/local# jar –cf wordcount.jar WordCount*.class

Before running step 7 we need to ensure that all Hadoop master and slave node are running their
jobs. If the jobs are not running then give the following commands in master node.

root@hadoopmaster:/usr/local# $HADOOP_HOME/sbin/start-dfs.sh

43

root@hadoopmaster:/usr/local# $HADOOP_HOME/sbin/start-yarn.sh

root@hadoopmaster:/usr/local# $HADOOP_HOME/sbin/mr-jobhistory-daemon.sh start
historyserver

Now we can move to step 7

Step 7

The following command is to run WordCount application by taking the input file from HDFS.

root@hadoopmaster:/usr/local# hadoop jar wordcount.jar WordCount input output
search_key.txt 2 16

Wait until the execution is complete . At the execution time you will get an output like this.

Step 8

The following command is to verify the output folder in HDFS .

root@hadoopmaster:/usr/local# hadoop dfs -ls output

44

Step 9

The following command is to see the output in part-r-00000 which is in HDFS output folder.

root@hadoopmaster:/usr/local# hadoop dfs –cat output/part-r-00000

Step 10

The following command is to copy the output folder from the HDFS to local file system to
analyze the output.

root@hadoopmaster:/usr/local# hadoop dfs copyToLocal output

Therefore we complete the execution of MapReduce based application on Hadoop Cluster.

45

Now let us see some web interfaces for running the program.

To see the execution time for processing 268.030 data we need to go to the ResourceManager
web interface

http://hadoopmaster:8088

Here elapsed time is 41sec .

We can also browse HDFS web interface to download the output in our local file system from
HDFS

http://hadoopmaster:50070

46

Chapter 6

Result & Discussion
In objective we have said that we want to establish 3 things in this implementation.

i.The first one is ssh authentication. We wanted to establish a password-less ssh by sharing
public key of muster node and slave node . For that first we had compute public key and then
shared the keys so that transferiing data or starting jobs there occure no difficulties. Now we
want to test whether we could establish remote system through ssh where to communicate with
each other there need no password . For that we will give a command from MasterNode to
remote access SlaveNode.

root@hadoopmaster: ssh hadoopslave1

Here we can see that we got a remote access of hadoopslave1 in hadoopmaster. From
hadoopmaster we can see what jobs are running in hadoopslave1 and also we can access other
contents of hadoopslave1

Now we will try to remote host hadoopmaster from hadoopslave1 so that we can confirm that we
have fulfill our first object ssh authentication.

47

root@hadoopslave1: ssh hadoopmaster

Here we can see that we got a remote access of hadoopmaster from hadoopslave1 without
password. Here we can run the jobs that are supposed to run in hadoopmaster. And also we can
see other contents of hadoopmaster without any password.

Therefore, our first objective is fulfill of our project.

 ii. The second one objective was to implement Hadoop cluster successfully. The hadoop cluster
is successfully implemented or not we can check by inspecting the running jobs in Master and
SlaveNode . For that we will follow the following command.

root@hadoopmaster: jps

if NameNode , SecondaryNameNode, ResourceManager, JobHistoryServer are running in
hadoopmaster then we can say that hadoopmaster is created successfully.

48

root@hadoopslave1: jps

If DataNode, NodeManager are running in hadoopslave1 then we can say that hadoopslave1 is
successfully created.

Therefore our second objective of this project is also fulfilled. We have successfully
implemented Hadoop cluster.

iii. The third objective was to run a MapReduce based application successfully. To understand
the implementation of MapReduce on Hadoop cluster we will provide the web interfaces of
Hadoop cluster.

We can see the MapReduce JobHistoryServer web page to identify whether MapReduce
Application success or failed.

http://hadoopmaster:8088

Here we can see that MapReduce Application (Word Count) SUCCEEDED at the above.

49

Now we want to confirm if the slave node is running or not through web browser. For that we
need to browse the YARN ResourceManager.

http://hadoopmaster:8088

Here you can see hadoopslave1 Node is RUNNING .

Now to confirm the hadoopmaster node is running through web page we need to browse the
HDFS webpage.

http://hadoopmaster:50070

Here you can see hadoopmaster node is active.

50

Finally we want to see if the output is created in the HDFS through web browser. For that we
need to browse the HDFS webpage

http://hadoopmaster:50070

Now want to see the content of output and also we want to download the output/part-r-00000
file.

Therefore here we proved that our third objective of this project is successful. So we fulfill our
three objective of this project.

51

 Chapter 7

Conclusion & Future Work
7.1 Conclusion

Data are increasing day by day. For processing this large amount of data in low cost and less
time, Hadoop cluster in an effective platform. We have implemented Hadoop cluster in a very
simpler way. We have also presented MapReduce based application in Hadoop Cluster for
processing data as MapReduce gives privileges to work faster and distributed way. We have
monitored successful implementation of Hadoop cluster by web interfaces. So, our goal was to
give a clear perspective about Hadoop cluster along with MapReduce. Now-a-days many
organizations are hiring Hadoop developer for processing large amount of data. So for stepping
forward in Hadoop field this project work will be very helpful to understand the basic of Hadoop
and the implementation of Hadoop cluster.

7.2 Future Work

We have implemented a small Hadoop cluster which is consist of one master and one slave. In
future we want to implement Hadoop cluster among one slave and multiple slaves. As the master
node RAM is 4 GB , in future we want to create master node at least with 8 GB RAM. We have
implemented existing MapReduce application by modifying to understand the mechanism of
MapReduce. But in near future we want to implement our own invention MapReduce application
to understand the mechanism of MapReduce. For that we have a great wish to implement
Adaptive Merge Sort on Hadoop Cluster as MapReduce application. We have chosen Adaptive
Merge sort as an application of MapReduce because in Adaptive Merge Sort there is a
partitioning step which can describe the MapReduce mechanism very nicely .

52

Reference

[1] What is Computer Cluster? ‐ Definition from Techopedia. (2017). Techopedia.com. Retrieved 22
April 2017, from https://www.techopedia.com/definition/6581/computercluster
[2] HDFS Architecture Guide . (2017). Hadoop.apache.org. Retrieved 22 April 2017, from
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[3] NameNode ‐ Hadoop Wiki. (2017). Wiki.apache.org. Retrieved 22 April 2017, from
https://wiki.apache.org/hadoop/NameNode

[4] DataNode ‐ Hadoop Wiki. (2017). Wiki.apache.org. Retrieved 22 April 2017, from
https://wiki.apache.org/hadoop/DataNode

[5] An Automation Tool for Single‐node and Multi‐node Hadoop Cluster. (2017). Scialert.net.
Retrieved 9 April 2017, from http://scialert.net/fulltext/?doi=jai.2013.82.88

[6] Hadoop clusters: Benefits and challenges for big data analytics. (2017). SearchStorage. Retrieved
9 April 2017, from http://searchstorage.techtarget.com/tip/HadoopclustersBenefitsand

challengesforbigdataanalytics

[7] Hadoop ‐ Multi Node Cluster. (2017). www.tutorialspoint.com. Retrieved 22 April 2017, from
https://www.tutorialspoint.com/hadoop/hadoop_multi_node_cluster.html

[8]Hedlund, B. (2011). Understanding Hadoop Clusters and the Network. Bradhedlund.com.
Retrieved 9 April 2017, from http://bradhedlund.com/2011/09/10/understandinghadoopclusters

andthenetwork/

[9] device, H., speed, D., switch, J., Linux, H., array, H., & data, H. (2016). Why does hadoop require SSH
passwordless access ‐ Fibrevillage. Fibrevillage.com. Retrieved 9 April 2017, from
http://fibrevillage.com/storage/627whyhadooprequiresshpasswordlessaccesshadoop

installation

[10] Official, D. (2016). How to Setup Hadoop Multi Node Cluster ‐ Step By Step. Dwbi.org. Retrieved
9 April 2017, from https://dwbi.org/etl/bigdata/183setuphadoopcluster

[11]Apache Hadoop 2.7.3 – MapReduce Tutorial. (2017). Hadoop.apache.org. Retrieved 9 April 2017,
from https://hadoop.apache.org/docs/stable/hadoopmapreduceclient/hadoopmapreduceclient

core/MapReduceTutorial.html

[12] Hadoop MapReduce. (2017). www.tutorialspoint.com. Retrieved 22 April 2017, from
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.html

[13] Hadoop Tutorial 1 ‐‐ Running WordCount ‐ DftWiki. (2017). Cs.smith.edu. Retrieved 22 April
2017, from http://cs.smith.edu/dftwiki/index.php/Hadoop_Tutorial_1__Running_WordCount

