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Abstract 

The Internet of Things (IoT) presents a dream of a future Internet where people,              

computing systems and everyday objects or things collaborate sensing and actuating           

abilities to integrate a connection between the physical world and the cyber world. A key               

innovation in the acknowledgment of IoT frameworks is middleware, which is generally            

depicted as a product framework intended to be the mediator between IoT gadgets and              

applications. All in all, middleware can ease a development process by incorporating            

heterogeneous computing and communications devices and supporting interoperability        

inside the differing applications and administrations. Be that as it may, each one of              

those advantages can happen to colossal dangers of protection privacy and security            

issues. There are many existing protocols and mechanisms to secure communications           

in the IoT. In this paper, we give a brief review of IoT and its middleware device and                  

also the security protocols that is needed to secure the security challenges in             

middleware.  
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Chapter 1 
Introduction 

1.1 Introduction 
Internet of Things (IoT) is a collection of ‘things’ with the advance numerous             

technologies including sensors, actuators, embedded computing and cloud computing.         

By enabling easy access of and interaction with a wide variety of physical devices or               

things such as home appliances, surveillance cameras, monitoring sensors, actuators,          

displays, vehicles, machines and so on, the IoT will foster the development of             

applications in many different domains, such as home automation, industrial          

automation, medical aids such as mobile healthcare, elderly assistance; intelligent          

energy management and smart grids, traffic management, and many others. A number            

of operating systems have been developed [2]–[7] to support the development of IoT. 

There are four essential components of IoT, they are  

● Wireless Sensor Networks (WSNs) 

●  Radio-Frequency Identification (RFID) 

● Machine-to-Machine (M2M) communications 

● Supervisory Control and Data Acquisition (SCADA) 

A fully functional IoT middleware needs to integrate these technologies to support the             

envisioned different application domains [8]. To date, the majority of the existing IoT             

middleware proposals [9]–[17] are WSNs centric. Also, the amount of middleware           

proposals for RFID, M2M communications, and SCADA is limited unlike WSNs. 

  

Figure 1: Essential components of IoT 
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THE INTERNET of Things (IoT) is a domain that represents the next most exciting              

technological revolution since the Internet [18]–[21]. Smart cities with parking spaces,           

urban noise, traffic congestion, street lighting, irrigation, and waste can be build with the              

help of IoT to monitor in real time and manage them more effectively. Energy-efficient              

smart homes can be build that are more safe and eco-friendly. Devastating disasters             

such as air and water pollution, earthquakes, forest fires, and many such others             

calamities can be monitored with smart environments build using IoT. Leaner and            

smarter manufacturing can be introduced with IoT. We could save numerous human            

lives with early warnings provided by IoT. Every imaginable industry segment can have             

massive disruption and innovation. While the IoT offers numerous exciting potentials           

and opportunities, it remains challenging to effectively manage things to achieve           

seamless integration of the physical world and the cyber one [18], [22]-[23]. Every day              

new protocols for connectivity of IoT middleware are being developed and the number is              

increasing.  

This paper aims to provide a clear understanding of current research and challenges of              

IoT middleware systems and security issues related with that.  

The main contributions of this paper are as follows. 

1) A classification of the different types of architecture of IoT middleware. 

2) A comparative analysis of emerging IoT middleware systems for each architecture            

type. 

3) Iot Protocols detail needed in different layers 

4) An assessment of the key research challenges, such as composition, adaptability            

and security, in building the next generation IoT middleware for rapid composition of IoT              

applications. 
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Chapter 2 
IoT 

2.1 What is IoT 
IoT means “A world-wide network of interconnected objects uniquely addressable based           

on standard communication protocols” [24]. The IoT refers to industrial objects, or            

“things,” instrumented with sensors, automatically communicating over a network,         

without human-to-human or human-to-computer interaction, to exchange information        

and take intelligent decisions with the support of advanced analytics [25].  

The definition of “things” in the IoT vision is very wide and includes a variety of physical                 

elements or hardwares. Based on this view of “things,” an enormous number of devices              

will be connected to the Internet, each providing data and information and some even              

services. In short, IoT enabled by a myriad of software and hardware technologies.  

IoT can be viewed from three perspectives:  

1) Internet-oriented;  

2) Things-oriented (sensors or smart-things) and  

3) Semantic-oriented (knowledge) [21].  

Also, the IoT can be viewed as either supporting consumers (human) or industrial             

applications and indeed could be named as the human Internet of Things (HIoT) or the               

Industrial Internet of Things (IIoT) [8],[24]-[27].  

The first definition of the IoT was from a “things-oriented” perspective, where RFID tags              

were considered as things [21]. According to the RFID community, IoT can be defined              

as, “The worldwide network of interconnected objects uniquely addressable based on           

standard communication protocols” [24]. 

The European research cluster of IoT (IERC) definition, where “The Internet of Things             

allows people and things to be connected anytime, anyplace, with anything and anyone,             

ideally using any path/network, and any service” [28]-[29]. 
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Figure 2: IoT Architecture 

The International Telecommunication Union (ITU) views IoT very similarly: “From          

anytime, anyplace connectivity for anyone, we will now have connectivity for anything”            

[30].  

Finally, we can conclude it as connectivity of physical objects to the Internet for the               

purposes of monitoring and controlling their behavior to gain efficiencies and create new             

capabilities. 

 

2.2 IoT Architecture 
There are three existing IoT middleware architectures from our observation point. The            

first type, which refer to it as a service-based solution, generally adopts the service              

oriented architecture (SOA) [31] and allows developers or users to add or deploy a              

diverse range of IoT devices as services. The second type, which is known as              

cloud-based solution, limits the users on the type and the number of IoT devices that               

they can deploy, but enables users to connect, collect, and interpret the collected data              

with ease since possible use cases can be determined and programmed a priority. The              

third type is the actor-based framework that emphasizes on the open, plug and play IoT               

architecture. Many IoT devices can be made reusable actors and distributed in the             

network. 
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Figure 3: Overview of Various IoT Middleware 

We can also represent IoT architecture in four categories of interconnected systems:            

things, gateways, network & cloud, and services-creation & solutions layers, as shown            

in Figure 2.  

 
Figure 4: IoT structure and IoT technologies 

 

Things: 

Now in our everyday life, billions of things are found in commercial and industrial              

platforms, in the home, and in the hands of mobile users. Already in cars, device               

sensors, wearables, mobile phones and not to mention open source development           

boards equipped with IoT features which can connect directly through broadband or            

wireless networks and accessing the Internet. A requirement for IoT solutions includes            

things to either be intelligent so they can filter and manage data locally, or connect to                

gateways that provide this functionality. 

Examples:  

● Mobile: smart phones, tablets, GPS systems, wearables  

● Home: security alarms, energy consumption monitors, lighting switches,        

thermostats  

● Industrial: smart buildings, factory automation, energy grids, fleets 

● Others: Arduino, Raspberry Pi, Intel Edison development boards with equipped          

sensors 
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Gateways:  

Around almost 85 percent of existing things are not designed to connect to the Internet               

and so cannot share data with the cloud which is a major barrier to the concept of IoT.                  

To addressing this issue, gateways for mobile, home, and industrial has been            

introduced to act as intermediaries between legacy things and the cloud, providing the             

needed connectivity, security, and manageability. 

 

Network and Cloud: 

Network Infrastructure:  

The Internet is a global system of interconnected IP networks that link computer             

systems together. This network infrastructure, comprising routers, aggregators,        

gateways, repeaters and other devices that control data traffic flow also connects to             

telecom and cable networks (e.g. 3G, 4G/ LTE) operated by service providers.  

Data Center / Cloud Infrastructure:  

Data centers and cloud infrastructure contain large pools of virtualized servers and            

storage that are networked together. Supporting IoT, this infrastructure runs applications           

that analyze data from devices and sensors in order to generate actionable information             

used for services and decision making. 

 

2.3 IoT Characteristics: 
The main characteristics of the IoT are presented from infrastructure and application            

perspectives. 

1. Characteristics of IoT Infrastructure: 
Heterogeneous Devices: As Iot d has a nature of embedded and sensor            

computing services means that low-cost computing platforms are likely to be           

used. In fact, to minimize the impact of such devices on the environment and              

energy consumption, low-power radios are likely to be used for connection to the             

Internet. For example, BLE, 6LowPAN, Zigbee. 
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Resource-constrained: For embedded computing and sensors a small device         

form factor is required limiting their processing, memory, and communication          

capacity. RFID devices or tags may not have any processing capacity or even             

battery to power them. On the other hand, devices become expensive and larger             

in form-factor. 

Spontaneous interaction: Sudden interactions can take place in IoT         

applications as objects move around, and come into other objects          

communication range, leading to the spontaneous generation of events.         

Typically, in IoT, an interaction with an object means that an event is generated              

and is pushed to the system without much human attention. 

Ultra-large-scale network and large number of events: In an IoT environment,           

thousands of devices or things may interact with each other even in one local              

place (e.g., in a building, supermarket and university) which will produce an            

enormous number of events as normal behavior. In Global perspective, the IoT            

network will be ultra-large with nodes in the scale of billions and even in trillions.               

As a result this uncontrolled number of events may cause problems such as             

event congestion and reduced event processing capability. 

Dynamic network and no infrastructure: ​IoT will integrate devices, many of           

which will be mobile, wirelessly connected and resource constrained. Mobile          

nodes within the network able to leave or join anytime they want. Also, nodes can               

be disconnected due to poor wireless links or battery shortage. These key            

factors will make the network in IoT highly dynamic. Within such an ad hoc              

environment, where there is limited or no connection to a fixed infrastructure, it             

will be difficult to maintain a stable network to support many application scenarios             

that depend on the IoT. Nodes will need to cooperate to keep the network              

connected and active. 

Context-aware: Context is key in the IoT and its applications. Context-aware           

computing stores context information related to sensor data, easing its          

interpretation. A large number of sensors will generate large amounts of data,            
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which will not have any value unless it is analyzed, interpreted, and understood.             

Context-awareness (especially in temporal and spatial context) plays a vital role           

in the adaptive and autonomous behavior of the things in the IoT [32]-[33]. Such              

behavior will help to eliminate human-centric mediation in the IoT, which           

ultimately makes it easier to perform M2M communication, a core element of the             

IoT’s vision. 

Intelligence: According to Intel’s IoT vision, intelligent devices or things and           

intelligent systems of systems are the two key elements of IoT. In IoT’s dynamic              

and open network, these intelligent entities along with other entities such as Web             

services (WSs), SOA components, and virtual objects will be interoperable and           

able to act independently based on the context, circumstances, or environments           

[34]-[35]. 

Location-aware: ​Location or spatial information about things (objects) or         

sensors in IoT is critical, as location plays a vital role in context-aware computing.              

In a large scale network of things, interactions are highly dependent on their             

locations, their surroundings, and presence of other entities (e.g., things and           

people). 

Distributed: As like The traditional Internet, IoT is also a globally distributed            

network. The strong spatial dimension within the IoT makes the network IoT            

distributed at different scales (i.e., both globally like the Internet, and also locally             

within an application area). 

 

2. Characteristics of IoT Applications: 
Diverse applications: ​The IoT can offer its services to a large number of             

applications in numerous domains and environments. These domains and         

environments can be grouped into (nonexhaustive) domain categories such as:          

1) transportation and logistics; 2) healthcare; 3) smart environment (home, office,           

and plant); 4) industrial; and 5) personal and social domain. Figure, highlights            

some key application domains for the IoT. 
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Figure 5: Potential applications of IoT 

Real time: ​Applications using the IoT can be broadly classified as real time and              

non-real time. For example, IoT for healthcare, transportation will need real-time           

data or service delivery. Delayed delivery of data can make the application or             

service useless and even dangerous in mission critical applications. 

Everything-as-a-service (XaaS): An everything-as-a-service (XaaS) model is       

very efficient, scalable, and easy to use [36]. The XaaS model has inspired the              

sensing as a service approach in WSNs [37]-[38], and this may inevitably lead             

IoT toward an XaaS model. As more things get connected, the collection of             

services is also likely to grow, and as they become accessible online, they will be               

available for use and reuse. 

Increased security attack-surface and privacy leakage: Though IoT has huge          

potential in different domains, applications and networks security is also an issue.            

Global connectivity and accessibility is required for IoT so that anyone can            

access it anytime and anyway and also applications may collect information           

about people’s daily activities such as travel routes, buying habits, and daily            

energy usage etc. This increases the chances of being attacked and exploited in             

applications and networks. The introduction of cloud computing makes the          

problem of privacy leakage even worse. The inherent complexity of the IoT            

further complicates the design and deployment of efficient, interoperable, and          

scalable security mechanisms. 
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2.4 IoT Applications: 
The fast growth of the number of IoT devices utilized is predicted to reach 41 billion in                 

2020 with an $8.9 trillion market [39] as stated in the 2013 report of the International                

Data Corporation. The difference between IoT and the traditional Internet is the absence             

of Human role. The IoT devices can create information about individual’s behaviors,            

analyze it, and take action. Services provided by IoT applications offer a great benefit              

for human’s life, but they can come with a huge price considering the person’s privacy               

and security protection. 
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Chapter 3 
IoT Middleware 

3.1 Middleware 
Universal access of computing resource is the core of the Internet of Things, which              

means incorporating computing and connectivity in all the things around us.           

Interoperability of such heterogeneous devices needs well-defined standards. But the          

standardization is difficult because of the varied requirements of different applications           

and devices. For such heterogeneous applications having a middleware platform is the            

solution which will abstract the details of the things for applications. It will cover up the                

details of the smart things and should act as a software bridge between the things and                

the applications. It needs to provide the required services to the application developers             

[32] so that they can focus more on the requirements of applications rather than on               

interacting with the baseline hardware. To summarize, the middleware abstracts the           

hardware and provides an Application Programming Interface (API) for communication,          

data management, computation, security, and privacy. 

 

3.2 Types of Middleware: 
1. Message Oriented Middleware: ​Message-oriented middleware comprises a       

category of inter-application communication software that usually relies on         

asynchronous message-passing, as opposed to a request-response architecture.        

In case of asynchronous systems, message queues provide temporary storage          

when the destination program is busy or unable to get connected. It enables             

applications to be disbursed over various platforms and makes the process of            

creating software applications spanning many operating systems and network         

protocols much less complicated. It has many advantages over middleware          
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alternatives (e.g. hard coding logic) and is one of the most widely used types of               

middleware. 

2. Object Middleware: ​Object middleware, also known as object request broker,          

gives applications the ability to send objects and request services via an object             

oriented system. In short, it manages the communication between objects. 

3. Remote Procedure Call (RPC) Middleware: ​An RPC calls procedures on          

remote systems and is used to perform synchronous or asynchronous          

interactions between applications or systems. It is usually utilized within a           

software application. 

4. Database Middleware: ​This type of middleware allows for direct access to           

databases providing direct interaction with them. There are a lots of database            

gateways and connectivity options available. You simply have to see what will            

work best for your necessary solution. This is the most general and commonly             

known type of middleware. This includes SQL database software. 

5. Transaction Middleware: ​This type of middleware includes applications like         

transaction processing monitors. It also encompasses web-application servers.        

These types of middleware are becoming more and more common today. 

6. Portals: ​This refers to enterprise portal servers. It is considered middleware           

because portals facilitate front-end integration. They are used to create          

interactions between a user’s computer or device and back-end systems and           

services. 

7. Embedded Middleware: ​This type of middleware allows for communication and          

integration services with an interface of software or firmware. It acts as a liaison              

between embedded applications and the real-time operating system. 

8. CONTENT-CENTRIC MIDDLEWARE: ​This type of middleware allows you to         

abstract specific content without worrying how it is obtained. This is done through             

a simple provide/consume abstraction. It is similar to publish/subscribe         

middleware, which is another type of this software that is often used as a part of                

web-based applications. 
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3.3 Middleware Requirements 
A middleware provides a layer of software between applications, the operating system            

and the network communications layers. It facilitates and coordinates some aspect of            

co-operative processing. So from the computing perspective, a middleware provides a           

layer between application software and system software. In these requirements are           

grouped into two sets:  

1. The services such a middleware should provide and  

2. The system architecture should support.  

Functional requirements capture the services or functions (e.g. abstractions, resource          

management) a middleware provides and nonfunctional requirements (e.g. reliability,         

security, and availability) capture QoS support or performance issues. 

1. Services a Middleware provides: 
As the focus is on generic or common functional ones, as follows. 

Resource discovery: IoT resources include heterogeneous hardware devices        

(e.g. RFID tags, sensors, sensor mote, and smartphones), devices power and           

memory, analogue to digital converter devices (ADC), the communications         

module available on those devices, and infrastructural or network level          

information (e.g. network topology and protocols), and the services provided by           

these devices. Assumptions related to global and deterministic knowledge of          

these resources’ availability are invalid, as the IoT infrastructure and environment           

is dynamic. This is a different model to centralized distributed systems, where            

resource publication, discovery, and communication are generally managed by a          

dedicated server. Discovery mechanisms also need to scale well, and there           

should be efficient distribution of discovery load, given the IoT composition of            

resource-constrained devices. 

Resource management: ​An acceptable QoS is expected for all applications,          

and in an environment where resources that impact on QoS are constrained,            

such as the IoT, it is important that applications are provided with a service that               

manages those resources. This means that resource usage should be monitored,           
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resources allocated or provisioned in a fair manner and resource conflicts           

resolved. In IoT architectures, especially in service oriented or virtual machine           

(VM) based architectures, middleware needs to facilitate potentially spontaneous         

resource (service) (re)composition, to satisfy application needs. 

Data management: Data are key in IoT applications. In the IoT, data refer             

mainly to sensed data or any network infrastructure information of interest to            

applications. An IoT middleware needs to provide data management services to           

applications, including data acquisition, data processing (including       

preprocessing) and data storage. Preprocessing may include data filtering, data          

compression and data aggregation. 

Event management: ​There are potentially a massive number of events          

generated in IoT applications, which should be managed as an integral part of an              

IoT middleware. It should provide real-time analysis of high-velocity data so that            

downstream applications are driven by accurate, real-time information and         

intelligence. 

Code management: ​Deploying code in an IoT environment is challenging and           

should be directly supported by the middleware. In particular, code allocation and            

code migration services are required. Code allocation selects the set of devices            

or sensor nodes to be used to accomplish a user or application level task. Code               

migration transfers one node/device’s code to another one potentially         

reprogramming nodes in the network. 

 

Key nonfunctional requirements of IoT middleware are as follows. 

 

Scalability: An IoT middleware needs to be scalable to accommodate growth in            

the IoT network and applications or services. Considering the size of the IoT             

network IPv6 is a very scalable solution for addressability, as it can deal with a               

huge number of things that need to be included in the IoT [21]. Loose coupling               

and/or virtualization in middleware is useful in improving scalability, especially          
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application and service level scalability, by hiding the complexity of the           

underlying hardware or service logic and implementation. 

Real time or timeliness: Real time data providing is must service a middleware             

should provide as the correctness of an operation that supports depends not only             

on its logical correctness but also on the time in which it is performed. As the IoT                 

will deal with many real-time applications (e.g. transportation, healthcare),         

on-time delivery of information or services in those applications is critical.           

Delayed information or services in such applications can make the system           

useless and even dangerous. 

Reliability and Availability: The reliability and availability requirements should         

work together to ensure the highest fault tolerance required from an application.            

The middleware reliability ultimately helps in achieving system level reliability and           

also in critical ones, must be available or appear available, at all times. Every              

component or service in a middleware needs to be reliable to achieve overall             

reliability, which includes communication, data, technologies and devices from all          

layers even in the presence of failures. Even also if there is a failure somewhere               

in the system, its recovery time and failure frequency must be small enough to              

achieve the desired availability.  

Security and privacy: Security is critical to the operation of IoT. In IoT             

middleware, security needs to be considered in all the functional and           

nonfunctional blocks including the user level application. Context-awareness in         

middleware may disclose personal information (e.g. the location of an object or a             

person). Like security, every block of middleware, which uses personal          

information, needs to preserve the owner’s privacy. 

Ease-of-deployment: ​Since an IoT middleware is typically deployed by the user,           

deployment should not require expert knowledge or support. Complicated         

installation and setup procedures must be avoided. 

Popularity: An IoT middleware should be continuously supported and extended          

which is not necessarily a requirement but as a large number of users who adopt               
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a particular technology motivate future testing and development. Usually, this          

facility is provided within a community of developers and researchers. 

 

2. Architectural Requirements:  
The architectural requirements are designed to support application developers.         

They include requirements for programming abstractions and other        

implementation-level concerns. 

Programming abstraction: ​Providing an API for application developers is an          

important functional requirement for any middleware. For the application or          

service developer, high-level programming interfaces need to isolate the         

development of the applications or services from the operations provided by the            

underlying, heterogeneous IoT infrastructures. The level of abstraction, the         

programming paradigm and the interface type all need to be considered when            

defining an API. The level of abstraction refers to how the application developer             

views the system (e.g. individual node/device level, system level). The          

programming paradigm (e.g. publish/subscribe) deals with the model for         

developing or programming the applications or services. The interface type          

defines the style of the programming interface. For instance, descriptive          

interfaces offer SQL-like languages for data query [40], XML-based specification          

files for context configuration [41]. 

Interoperable: ​A middleware should work with heterogeneous       

devices/technologies/applications, without additional effort from the application or        

service developer. Heterogeneous components must be able to exchange data          

and services. A network should exchange information across different networks,          

potentially using different communication technologies. Syntactic interoperation       

should allow for heterogeneous formatting and encoding structures of any          

exchanged information or service. Semantic interoperability refers to the meaning          

of information or a service and should allow for interchange between the ever             

growing and changing set of devices and services in IoT. Meaningful information            
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about services will be useful for the users in composing multiple services as             

semantic data can be better understood by “things” and humans compared to            

traditional protocol descriptions [42]-[43]. 

Service-based: ​A middleware architecture should be service-based to offer high          

flexibility when new and advanced functions need to be added to an IoT             

middleware. A service-based middleware provides abstractions for the complex         

underlying hardware through a set of services (e.g. data management, reliability,           

security) needed by applications. All these and other advanced services can be            

designed, implemented, and integrated in a service-based framework to deliver a           

flexible and easy environment for application development. 

Adaptive: A middleware needs to be adaptive so that it can evolve to fit itself into                

changes in its environment or circumstances. In the IoT, the network and its             

environment are likely to change frequently. In addition, application-level         

demands or context are also likely to change frequently. To ensure user            

satisfaction and effectiveness of the IoT, a middleware needs to dynamically           

adapt or adjust itself to fit all such variations. 

Context-aware: ​Context-awareness is a key requirement in building adaptive         

systems and also in establishing value from sensed data. The IoT middleware            

architecture needs to be aware of the context of users, devices and the             

environment and use these for effective and essential services offerings to users. 

Autonomous: ​It means self-governed. Devices/technologies/applications are      

active participants in the IoT processes and they should be enabled to interact             

and communicate among themselves without direct human intervention [44]-[45].         

Use of intelligence including autonomous agents, embedded intelligence [46],         

predictive, and proactive approaches (e.g. a prediction engine) in middleware          

can fulfil this requirement [47]. 

Distributed: ​A large-scale IoT systems applications/devices/users (e.g. WSNs        

and vehicular ad hoc networks) exchange information and collaborate with each           

other. Such applications/devices/users are likely to be geographically distributed,         
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and so a centralized view or middleware implementation will not be sufficient to             

support many distributed services or applications. A middleware implementation         

needs to support functions that are distributed across the physical infrastructure           

of the IoT. 

 

3.4 OVERVIEW OF EXISTING WORK 
Middleware in IoT is a very active research area. Many solutions have been proposed              

and implemented which are highly diverse in their design approaches (e.g. event-based,            

database), level of programming abstractions (e.g. local or node level, global or network             

level) and implementation domains (e.g. WSNs, RFID, M2M, and SCADA). 

The existing middleware solutions are grouped for discussion based on their design            

approaches, as follows: 

1. Event-based 

2. Service-oriented 

3. VM-based 

4. Agent-based 

5. Tuple-spaces 

6. Database-oriented 

7. Application-specific 

Some middleware use a combination of different design approaches. For instance,           

many service-oriented middlewares (SOMs) (e.g. SOCRADES and Servilla) also         

employ VMs in their design and development. Typically, hybrid approaches perform           

better than their individual design categories by taking the advantages of multiple            

approaches. 

1. Event-Based Middlewares: ​In event-based middleware, components,      

applications, and all the other participants interact through events. Each event           

has a type, as well as a set of typed parameters whose specific values describe               

the specific change to the producer’s state. Events are propagated from the            

sending application components (producers), to the receiving application        
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components (consumers). An event system (event service) may consist of a           

potentially large number of application components (entities) that produce and          

consume events [48]. Message-oriented middleware (MOM) is a type of          

event-based middleware. Typically, event-based middleware uses the       

publish/subscribe pattern. This model contains a set of subscribers and a set of             

publishers. Subscribers are provided with access to publishers data streams          

through a common database and they are registered for particular events. The            

notifications about the events are subsequently and asynchronously sent to the           

subscribers [49], [10]. This design approach addresses nonfunctional        

requirements such as reliability, availability, real-time performance, scalability,        

and security [50]. Event-based middlewares are appropriate in systems where          

mobility and failures are common. A main advantage of this approach is support             

for strong decoupling of producers and subscribers. Although many challenges          

are addressed by most of the event-based middlewares, their support is not            

totally satisfactory, in particular, interoperability, adaptability, timeliness, and        

context-awareness are not adequately addressed. 

2. Service-Oriented Middlewares: ​The service-oriented design paradigm builds       

software or applications in the form of services. Service-oriented computing          

(SOC) is based on service-oriented architecture (SOA) approaches and has          

been traditionally used in corporate IT systems. The characteristics of SOC, such            

as technology neutrality, loose coupling, service reusability, service        

composability, and service discoverability [51], are also potentially beneficial to          

IoT applications. However, IoT’s ultra-large-scale network, resource-constrained       

devices and mobility characteristics make service discovery and composition         

challenging. An SOM has the potential to alleviate these challenges through the            

provision of appropriate functionalities for deploying, publishing/discovering, and        

accessing services at runtime. SOM also provides support for adaptive service           

compositions when services are unavailable. A large number of service-oriented          

IoT middlewares are available. These middlewares can be categorized as          
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standalone SOM for IoT [52]-[56] or middleware services provided by cloud           

computing platform as a service (PaaS) model [57]-[58]. Most existing SOMs are            

WSNs-centric and their scale is limited to WSNs, which is typically in the range of               

thousands, much less than the ultra large scale (billions) of IoT. A global,             

scalable, understanding of IoT services syntax, and semantics is required. Most           

existing standalone SOMs offer only limited security through authentication. Also,          

cloud platform storage security and trust could be a concern for many IoT             

applications. 

3. VM-Based Middlewares: ​VM-oriented middleware design provides      

programming support for a safe execution environment for user applications by           

virtualizing the infrastructure. The applications are divided into small separate          

modules, which are injected and distributed throughout the network. Each node           

in the network holds a VM, which interprets the modules. This approach            

addresses architectural requirements such as high level programming        

abstractions, self-management, and adaptivity, while supporting transparency in        

distributed heterogeneous IoT infrastructures [59]-[60]. VMs can be divided into          

two categories: 1) middleware-level VMs (VMs are placed between the OS and            

applications) and 2) system-level VMs (substitute or replace the entire OS) [10],            

[59]. Middleware level VMs add capabilities (e.g. concurrency) to the underlying           

OSs [61]. System level VMs free up resources that would otherwise be            

consumed by the OS. The resource-constrained characteristics of WSNs raise          

an important limitation; VMs require significant memory and processing power          

resources, which makes virtualization feasible only on resource-rich devices [10].          

Moreover, the new languages and tools that need to be adopted create a steep              

learning curve for users and developers [62]. 

Application-specific virtual machines (ASVMs) [61] solve the problems imposed         

by traditional VM solutions by limiting the generality of the VMs to subsets             

relevant to application domain(s) [63]. This type of VM minimizes overhead by            

reducing the size of the interpreted code and by using an on-the-fly compiler to              
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native code. On the hardware side, the interpretation overhead is minimized           

using CPU-specific bytecode. 

4. Agent-Based Middlewares: ​In the agent-based approach to middleware,        

applications are divided into modular programs to facilitate injection and          

distribution through the network using mobile agents. While migrating from one           

node to another, agents maintain their execution state. This facilitates the design            

of decentralized systems capable of tolerating partial failures [64]. Previous          

research in this area has presented a number of advantages for using mobile             

agents in generic distributed systems [65]-[66]. In the context of the IoT            

middleware requirements, these are: resource management (network load        

reduction and network latency reduction), code management (asynchronous and         

autonomous execution and protocol encapsulation), availability and reliability        

(robustness and fault-tolerance), adaptiveness and heterogeneity [67]. Moreover,        

an agent can engage in dialogues with other software agents to proactively            

gather data and update only parts of the application. Additionally, agent-based           

approaches consider resource-constrained devices [68]. 

The IoT vision is to support the connection of various physical world objects to a               

common infrastructure and designing a system that will enable this is a complex             

process. The use of agent-based systems can reduce the complexity of           

designing such systems by defining some higher-level policies rather than direct           

administration. However, the autonomous characteristic of agents can lead to          

unpredictability in the system at runtime. The patterns and the effects of their             

interactions are uncertain [69]. Moreover, mobile agents are susceptible to          

message loss, especially in resource-constrained environments [70]. This        

imposes many limitations for an IoT middleware solution, including the ability to            

perform code management tasks. 

5. Tuple-Space Middlewares: ​In tuple-space middlewares, each member of the         

infrastructure holds a local tuple space structure. A tuple space is a data             

repository [71] that can be accessed concurrently. All the tuple spaces form a             

26 



federated tuple space on a gateway. This approach suits mobile devices in an             

IoT infrastructure, as they can transiently share data within gateway connectivity           

constraints. Applications communicate by writing tuples in a federated tuple          

space and by reading them through specifying the pattern of the data they are              

interested in.  

6. Database-Oriented Middlewares: ​A sensor network is viewed as a virtual          

relational database system in database-oriented middleware. Applications can        

make query to the database using an SQL-like query language, which enables            

the formulation of complex queries [10].  

A database approach to middleware views the whole network as a virtual            

database system. Easy-to-use interfaces support user queries to sensor         

networks to extract data of interest. However, only approximate results are           

returned. Most IoT applications are real time, where time and space are            

important. Database middlewares do not support timeliness. Energy consumption         

is reduced by collecting data from individual nodes. While database middlewares           

can provide good programming abstraction support and have good data          

management support, the rest of IoT middleware requirements are mostly          

ignored. Moreover, database middleware approach uses a centralized model,         

which makes it difficult to handle large-scale sensor networks dynamics.          

Furthermore, database middlewares generally do not support hard real-time         

applications, and are not popular with technology adopters, whose main interest           

tends to be in safety critical systems. 

7. Application-Specific Middlewares: ​An application-specific (i.e.,     

application-driven) approach to middleware focuses on resource management        

support (i.e., QoS support) for a specific application or application domain by            

implementing an architecture that fine-tunes the network or infrastructure (as          

shown in Fig. 11) based on the application or application domain requirements. 

Application-specific solutions do not address the heterogeneity of an IoT          

infrastructure as there is tight coupling between applications and middleware          
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layer. Moreover, the application specific approach creates only specialized         

middleware solutions [72] instead of general purpose solutions. This does not           

satisfy the IoT middleware requirements since an IoT solution should support           

multiple applications. Furthermore, all the presented application-specific       

middleware solutions use a centralized resource discovery mechanism, which is          

not a viable approach for a distributed fault-tolerant IoT solution. Moreover, these            

drawbacks make this type of middleware solutions unattractive to technology          

adopters. 
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Chapter 4 
IoT Security and Protocols 

4.1 IoT Security Challenges 
Services given by IoT applications offer an incredible advantage for human’s life but             

they can come with a huge cost considering the person’s privacy and security             

assurance. Sicari et al. [73] presented research challenges and the current solutions in             

the field of IoT security focusing on the main security issues which were identified in               

eight categories:  

1. Authentication 

2. Access control 

3. Confidentiality 

4. Privacy 

5. Trust 

6. Secure middleware 

7. Mobile security 

8. Policy enforcement 

As the communications infrastructures of internet evolves to encompass sensing          

objects, appropriate mechanisms will be necessary to secure communications with such           

devices, in the context of future IoT applications, in areas as diverse as healthcare (e.g.               

remote patient monitoring or monitoring of elderly people), smart grid, home automation            

(e.g. security, heating and lightening control) and smart cities (e.g. distributed pollution            

monitoring, smart lightenning systems) among many others. Such technologies         

currently form a much necessary wireless communications protocol stack for the IoT            

that together with the various communication technologies, is analyzed in detail in [74]             

the paper. This stack is enabled by the technologies the industry believes to meet the               

important criteria of reliability, power-efficiency and Internet connectivity. 
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As standardized communication protocol is our focus for the IoT, our discussion is             

guided by the protocol stack enabled by the various IoT communication protocols            

available or currently being designed. 

The current Internet architecture, IP-based communication protocols will play a key role            

in enabling the ubiquitous connectivity of devices in the context of IoT applications.             

Such communication technologies are being developed in line with the constraints of            

the sensing platforms likely to be employed by IoT applications, forming a            

communications stack able to provide the required power—efficiency, reliability and          

Internet connectivity. As security will be a fundamental enabling factor of most IoT             

applications, mechanisms must also be designed to protect communications enabled by           

such technologies.  

 

Security Requirements 

Security of IoT communications may be addressed in the context of the communication             

protocol itself or on the other end by external mechanisms. 

Other security requirements must also be considered for the IoT and in particular             

regarding communications with sensing devices. For example, WSN environments may          

be exposed to Internet-originated attacks such as Denial of Service (DoS) and in this              

context availability and resilience are important requirements. Mechanisms will also be           

required to implement protection against threats to the normal functioning of IoT            

communication protocols. Other relevant security requirements are privacy, anonymity,         

liability and trust which will be fundamental for the social acceptance of most of the               

future IoT applications employing Internet integrated sensing devices. 

 

4.2 IOT PROTOCOLS 

The set of IoT protocols, extends IoTs from a single constrained device to a whole               

range of cloud systems, that allow devices and servers to talk to one another. For this                

purpose, IEEE (Institute of Electrical and Electronics Engineers) and ETSI (European           
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Telecommunications Standards Institute) have defined some of the most important IoT           

protocols. 

Because of the constraints of sensing platforms and the scale factors of the IoT typically               

make most of the communications and security solutions implemented in the Internet is             

not suited for the IoT, working groups formed at standardization bodies as the Institute              

of Electrical and Electronics Engineers (IEEE) and the Internet Engineering Task Force            

(IETF) are designing new communications and security protocols that will play a            

fundamental role in enabling future IoT applications. Such technological solutions are           

being designed in line with the constraints and characteristics of low-energy sensing            

devices and low rate wireless communications. 

QoS control is a much better metric than the overloaded “real-time” term. QoS control              

refers to the flexibility of data delivery. A system with complex QoS control may be               

harder to understand and program, but much more demanding applications can be            

build.  

For example, consider the reliability QoS. Most protocols run on top of TCP which              

delivers strict, simple reliability. Every byte put into the pipe must be delivered to the               

other end, even if it takes many retries. This is simple and handles many common               

cases, but it doesn’t allow timing control. TCP’s single-lane traffic backs up if there’s a               

slow consumer. 

 

4.2.1 Data Protocols 
The IoT needs many protocols as in Iot devices must communicate with each other              

(D2D) with a motive to collect and send data to the server infrastructure (D2S) which will                

ultimately have an infrastructure to share the data (S2S) providing it back to the devices               

to analysis programs. 
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Figure 6: IoT protocols need to address response time 

The Fig. 6 shows that within 10 microsecond to 10 millisecond the communication             

between devices take place and sends the data or information to the server within less               

than 1 second. The task is not over here, then servers communicate between             

themselves to provide better services by analysis the data and give a proper way out.               

D2D communication requires real time communication guaranteed where S2S         

communication do not required super time communication. This is the reason for being             

S2S communication is greater than 1 second. 

DDS: 

The Data Distributed Service is a fast bus for integrating intelligent machines (D2D). It              

distributes data to other devices that directly use device data. In short it can efficiently               

deliver millions of messages per second to many simultaneous receivers. 

● Devices are fast even “Real time” is often measured in microseconds. 

● DDS implements direct device-to-device “bus” communication with a relational         

data model. So, Hub-and-spoke is completely inappropriate for device data use. 

● Devices need to communicate with many other devices in complex ways so            

TCP’s simple and reliable point-to-point streams are not suitable. 

● Instead, DDS offers detailed quality-of-service (QoS) control, multicast,        

configurable reliability, and pervasive redundancy. 

● Besides, fan-out is a key strength. DDS offers powerful ways to filter and select              

exactly which data goes where and “where” can be thousands of simultaneous            

destinations. Some devices are small so there are lightweight versions of DDS            

that run in constrained environments. 
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Figure 7: DDS global data space 

 

CoAP: 

Constrained Application Protocol (CoAP) was created by the IETF Constrained RESTful           

Environments (CoRE) working group. CoAP is an Internet application protocol for           

constrained devices that can be thought of as an alternative to HTTP. It is designed to                

be used between devices on the same constrained network between devices and            

general nodes on the Internet and between devices on different constrained networks            

both joined on the Internet. This protocol is especially designed for IoT systems based              

on HTTP protocols. 

● CoAP unlike HTTP, it incorporates optimizations for constrained application         

environments [40].  

● It uses the EXI (Efficient XML Interchanges) data format, which is a binary data              

format and is far more efficient in terms of space as compared to plain text               

HTML/XML.  

● Other supported features are built in header compression, resource discovery,          

autoconfiguration, asynchronous message exchange, congestion control and       

support for multicast messages.  

● There are four types of messages in CoAP: non-confirmable, confirmable, reset           

(nack) and acknowledgement.  

● For reliable transmission over UDP, confirmable messages are used [48]. 
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● CoAP is helping to minimize the cost of cloud–device connections, enabling IoT            

devices to cost effectively and securely send data over large distances while            

consuming very little power. 

 

Low Power Wide-Area-Networks (LPWAN): 

LPWAN is a protocol for long range communication in power constrained devices. The             

LPWAN class of protocols is low bit-rate communication technologies for following IoT            

scenarios [78].  

● Narrow band IoT: It is a technology made for a large number of devices that are                

energy constrained and necessary to reduce the bit rate. This protocol can be             

deployed with both the cellular phone GSM and LTE spectra.  

● Sigfox: It is one more protocol that uses narrow band communication (10 MHz)            

focuses on using very long waves. It uses free sections of the radio spectrum              

(ISM band) to transmit its data. Thus, the range can increase to a 1000 kms.  

● Weightless: It uses a differential binary phase shift keying based method to            

transmit narrow band signals. To avoid interference, the protocol hops across           

frequency bands (instead of using CSMA). It supports cryptographic encryption          

and mobility. Along with frequency hopping, two additional mechanisms are used           

to reduce collisions. The downlink service uses time division multiple access           

(TDMA) and the uplink service uses multiple subchannels that are first allocated            

to transmitting nodes by contacting a central server..  

● Neul: This protocol operates in the sub-1 GHz band. It uses small chunks of the               

TV white space spectrum to create low cost and low power networks with very              

high scalability. It has a 10 km range and uses the Weightless protocol for             

communication.  

● LoRaWAN: This protocol is similar to Sigfox. It targets wide area network            

applications and is designed to be a low power protocol. Its data rates can vary               

from 0.3 kbps to 50 kbps and it can be used within an urban or a suburban               
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environment (2–5 kms range in a crowded urban area). It was designed to serve             

as a standard for long range IoT protocols. 

 

MQTT: 

MQTT, the Message Queue Telemetry Transport is a protocol for collecting device data             

and communicating it to servers (D2S). It targets device to collect datas through a              

distributed network. It has a hub-and-spoke architecture.  

● As it is a D2S communication protocol so all the devices are connected to a data                

concentrator server.  

● In IoT data collection is huge and misuse of data is not desirable, so the protocol                

works on the top of TCP which provides a simple and reliable stream. 

● Since the IT infrastructure uses the data, the entire system is designed to easily              

transport data into enterprise technologies like ActiveMQ and enterprise service          

buses (ESBs). 

 

Figure 8: ​Communication infrastructure with MQTT  

 

XMPP: 

XMPP, Extensible Messaging and Presence Protocol is a protocol best for connecting            

devices to people in short it provides a great way to connect devices to server. It was                 

originally called “Jabber” and was developed for instant messaging (IM) to connect            
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people to other people via text messages. Its strengths in addressing, security and             

scalability make it ideal for consumer-oriented IoT applications.  

● For making person-to-person communications natural, XMPP uses the XML text          

format. It also runs over TCP or perhaps over HTTP on top of TCP. 

● In the IoT context, XMPP offers an easy way to address a device. This is               

especially handy if that data is going between distant, mostly unrelated points,            

just like the person-to-person case.  

● Its key strength is a ‘name@domain.com’ addressing scheme that helps connect           

the needles in the huge Internet haystack. 

● It is not designed to be fast, “real time” to XMPP is on human scales, measured                

in seconds. In fact, most implementations use polling or checking for updates            

only on demand. A protocol called BOSH (Bidirectional streams over          

Synchronous HTTP) lets servers push messages. 

 

Figure 9: Inter-Domain Federation 

 

AMQP: 

The Advanced Message Queuing Protocol (AMQP) is all about queues where a queuing             

system designed to connect servers to each other (S2S). It sends transactional            

messages between servers and is most appropriate for the control plane or            

server-based analysis functions.  

● As a message-centric middleware that arose from the banking industry, it can            

process thousands of reliable queued transactions as it is focused on not losing             

messages. 
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● Communications from the publishers to exchanges and from queues to          

subscribers use TCP, which provides strictly reliable point-to-point connection. 

● True to its origins in the banking industry, AMQP middleware focuses on tracking             

all messages and ensuring each is delivered as intended, regardless of failures            

or reboots.  

● For ensuring delivery, endpoints acknowledge acceptance of each message. 

● The standard also describes an optional transaction mode with a formal           

multiphase commit sequence. 

 

Figure 10: RabbitMQ message broker process. 

 

4.2.2 Communication Protocols 
BLE 

Bluetooth Low Energy IEEE 802.11 channel is designed for lower data throughput and             

reduced the power consumption using 2.4 GHz ISM band, 40 Channels on 2 MHz              

spacing. 

● BLE protocol stack is composed of two main parts: the Controller and the Host. 

● The Controller comprises the Physical Layer and the Link Layer and is typically             

implemented as a small System-on-Chip (SOC) with an integrated radio. 

● Communication between the Host and the Controller is standardized as the Host            

Controller Interface (HCI). 

● A Bluetooth Low Energy device can communicate with the outside world in two             

ways broadcasting or connections. 

● Everything is Optimized for Lowest Energy, by reducing transmit peak current           

and received time by sending short packets.  

● It is designed for sending small chunks of data (exposing state).  
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● Data can triggered by local events and can be read at anytime by a client. 

● Can theoretically support an unlimited number of devices, but the practical           

number of simultaneously connected devices is between 10 and 20. 

● For security it uses the Cipher Block Chaining-Message Authentication Code          

(CCM) algorithm for authentication and also uses a 128-bit AES block cipher for             

encryption 

 

Figure 11: Broadcast topology 

 

Bluetooth 

Bluetooth is a Short Range Wireless System, typically a few meters but can go up to 

approximately 100 meters in a open environment. Dynamically created Bluetooth          

devices to find and set-up temporary (ad-hoc) connections (small networks) with other            

devices. 

● Bluetooth is a wireless personal area network (WPAN). 

● Each Bluetooth wireless network can contain up to 7 active devices and is called              

a Piconet which can be linked to each other (overlap) to form larger area              

Scatternets. 

● The system control for Bluetooth requires one device to operate as the            

coordinating device called master while all of the other devices are slaves. 

● The characteristics of Bluetooth include an unlicensed frequency band that          

ranges from 2.4 GHz to 2.483 GHz. 
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Figure 12:  Illustration of Bluetooth Piconet and Scatternet with Slave/Slave node 

● Bluetooth have Sleep mode that is a process used in a radio receiver where              

electronic circuits (such as a receiver) are temporarily deactivated or put into a             

low power consumption mode (such as backlighting off) to save battery energy. 

 

Zigbee 

Zigbee is a standardized wireless protocol for personal area networking which is a             

hardware and software standard built IEEE 802.15.4 standard that defines the physical            

(PHY) and Medium Access Control (MAC) Layers. The ZigBee Alliance has added            

Network (NWK) and application (APL) layer specifications to complete what is called the             

ZigBee stack. It globally assigned 2.4 GHz unlicensed band or one of the 900 MHz               

regional bands.  

● It provides 10 to 75 meter range. Typical 2.4 GHz hardware has demonstrated 30              

meters indoors and over 100 meters outdoors. 

● 10 to 115 kbps data throughput. 

● Up to 100 ZigBee networks should be able to be co-located and still function. 

● ZigBee devices will typically operate at 0.1 to 1% duty cycles. 

● This allows the Carrier Sense Multiple Access (CSMA) scheme to produce robust            

results. ZigBee or 802.15.4 devices listen for a clear channel before they            

transmit. 

● The CSMA algorithm is part of the 802.15.4 software so the user is relieved of               

the burden of creating a collision avoidance scheme. 

● 2 years of battery life from standard AA and AAA batteries. 

● Three devices specified 
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1. Reduced Function Device (RFD) 

2. Full Function Device (FFD) 

3. Network coordinator (FFDC) 

● Mesh topology gives routers and coordinator multiple communication path         

options. 

● ZigBee maintains the low cost while adding the power of mesh networking, a             

feature not found in most wireless networking standards. 

 

 

Figure 13: ZigBee Network model 

 

Low Power WiFi 

The early standards for wireless LAN for WiFi were designed primarily to connect a              

laptop PC in home, office and on the road. The IEEE 802.11ac is created for connecting                

IoT devices that would require higher throughputs. The WiFi alliance has recently            

developed “WiFi HaLow,” which is based on the IEEE 802.11ah standard. It consumes             

lower power than a traditional WiFi device and also has a longer range. This is why this                 

protocol is suitable for Internet of Things applications. The range of WiFi HaLow is              

nearly twice that of traditional WiFi. 

● Like other WiFi devices, devices supporting WiFi HaLow also support IP           

connectivity, which is important for IoT applications.  
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● Let us look at the specifications of the IEEE 802.11ah standard [75] [76]. This              

standard was developed to deal with wireless sensor network scenarios, where           

devices are energy constrained and require relatively long range communication. 

● IEEE 802.11ah operates in the sub-gigahertz band (900 MHz). Because of the           

relatively lower frequency, the range is longer since higher frequency waves           

suffer from higher attenuation. We can extend the range (currently 1 km) by            

lowering the frequency further; however, the data rate will also be lower and thus              

the tradeoff is not justified. 

● IEEE 802.11ah is also designed to support large star shaped networks, where a             

lot of stations are connected to a single access point. 

 

Figure 14: WiFi300 Wi-Fi Module 
 

4.3 Security Challenges 
Diverse arrangement of real difficulties emerge contingent upon various cases. The           

following lists a few security challenges and considerations in planning and building IoT             

devices or systems are given below [77]: 

● Typically small, inexpensive devices with little to no physical security. 

● Computing platforms may not support complex and evolving security algorithms          

due to limited security compute capabilities, lack of higher processing power and            

low CPU cycles. 

● Designed to operate autonomously in the field with no backup connectivity if            

primary connection is lost. 
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● Mostly installed prior to network availability which increases the overall          

on-boarding time. 

● Requires secure remote management during and after onboarding. 

● Scalability and management of billions of entities in the IoT ecosystem. 

● Identification of endpoints in a scalable manner. 

● Crypto Resilience 

○ Embedded devices may outlive algorithm lifetime. For example, Smart         

meters could last beyond 40 years 

○ Crypto algorithms have a limited lifetime before they are broken 

● Physical Protection need to be provided as 

○ Mobile devices can be stolen 

○ Fixed devices can be moved 

● Tamper Detection techniques and design 

○ Always On: High Poll rate, more energy, quick detection 

○ Periodic Poll: Less energy, slower detection 

○ On-event Push: Minimal energy, no detection 

 

4.4 Security Requirements 
There are seemingly competing, complex security requirements to be deployed on a            

platform with potentially limited resources [77]: 

● Authenticate to multiple networks securely. 

● Ensure that data is available to multiple collectors. 

● Manage the contention between that data access. 

● Manage privacy concerns between multiple consumers. 

● Provide strong authentication and data protection (integrity and confidentiality)         

that are not easily compromised. 

● Maintain availability of the data or the service. 

● Allow for evolution in the face of unknown risks. 
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Chapter 5 
Conclusion 

5.1 Conclusion  
The IoT presents numerous benefits to consumers and has the potential to change the              

ways that people interact with technology. After a brief explanation of IoT and             

middleware this survey proposes to clarify the difficulties in adopting middleware for IoT             

development. The paper highlights the concept of IoT, it’s requirements and           

characteristics. It also presentes what middleware is and about it’s requirements. An            

detailed discussion on the IoT protocols is present on the paper. From all exposed              

difficulties and problems in this research, we realize that the security challenges in IoT              

platforms, presented at the end of chapter 4, is the difficulty that requires the greatest               

attention from the IoT developers. Hence we have the enlistment of the security             

requirements for IoT. Software for IoT involves distribution and data sharing, thus            

increasing the risks of data theft. From a security and privacy perspective, the             

introduction of sensors and devices into currently intimate spaces such as the home,             

the car, wearable objects, or everyday things to detect and share observations about us              

increasingly deserves special attention and concern. There is no denying the utility of             

middleware assists IoT development, but we have to be aware of some concerns about              

the difficulties and problems that this paper covers in its study. 

 

For future researches, there is good opportunity to apply solutions to all problems listed              

above or to choose security as the problem most relevant to the use of middleware for                

IoT. 
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