A New Load Balancing Method
Based on Dynamic Cluster
Construction for Solution-
. Adaptive Finite Element Graphs on

Distributed Memory Multicomputers
Mabheen Islam

Compurer Science and Engineering Department

East West University, Dhaka, Bangladesh.

Upama Kabir
Computer Science and Engineering Department, University of Dhaka

Mossadek Hossain Kamal
Computer Science and Engineering Department, University of Dhaka

~solve the load imbalance problem of a solution-adaptive finite element application
=== on z distributed memory multicomputer, the load of a refined finite element

= c2n be redistributed, based on the current load of each processor. For this purpose a
wad-Salancing algorithm can be applied to balance the computational load of each
escessor In this paper, a distributed method for load balancing is proposed, which is
Sased on the global load balancing information and current load distribution of the
ws== A simulation model has been developed to compare the performance of the
weposed method with previously stated methods like Maximum Cost Spanning Tree

++ Balancing (MCSTLB) Method, Binary Tree Load Balancing (BTLB) Method and
socensed Binary Tree Load Balancing (CBTLB) Method. Two criteria, the execution
S 20d the number of process migration required by different load balancing methods
Sesn used for performance evaluation. The experimental result shows that the
secwsion time and the number of process migration required by the proposed method is

R than that of existing methods,

15

The finite element method is widely used for the structural modeling of
physical systems. In the finite element model, an object can be viewed as a finite
element graph, which is a connected and undirected graph that consists of a
number of finite clements. Each finite element is composed of a number of
nodes. Due to the properties of computation-intensiveness and computation-
locality, to implement the finite element method on distributed memory
multicomputers (Angus, Fox, Kim & Walker, 1990; Fox, Johnson, Lyzenga,
Salman & Walker, 1988; Simon, 1991, p. 135; Williams, 1990; Williams, 1991,
p. 457) appears as an attractive proposition.

In the context of parallelizing a finite element application program that
uses iterative techniques to solve a system of equations (Aykanat, Doraivelu,
Martin & Ozgtner 1987, p. 662), a parallel program may be viewed as a
collection of tasks represented by nodes of a finite element graph. Each node
represents a particular amount of computation and can be execured
independently. To efficiently execute a finite element application program on a
distributed memory multicomputer, we need to map nodes of the
corresponding finite element graph to processors of a distributed memory
multicomputer in such a way that each processor has approximately the same
amount of computational load and so that the communication among
processors is minimized. Since this mapping problem is known to be NP-
complete (Garey & Johnson, 1979), many heuristic methods have been
proposed to find satisfactory suboptimal solutions (Barnard & Simon, 1994,
p.101; Barnard & Simon, 1995, p. 627; Ercal, Ramanujam & Sadayappan,
1990, p.35; Fiduccia & Mattheyes, 1982, p.175; Gilbert & Zmijewski, 1987,
p. 427; Gilbert, Miller & Teng, 1995, p. 418; Hendrickson & Leland, 1995,
p.469; Hendrickson & Leland, 1995; Karypis & Kumar, 1995; Karypis &
Kumar, 1995; Kernigham & Lin, 1970, p. 292; Simon, 1991, p.135;
Williams, 1991, p. 457).

For a solution-adaptive finite element application program, the number of
nodes increases discretely due to the refinement of some finite elements during
the execution. This may result in load imbalance of processors. A node remapping
or a load-balancing algorithm has to be performed many times in order to balance
the computational load of processors while keeping the communication cost
among processors as low as possible. For the load balancing approach, some load-
balancing algorithms can be used to perform the load balancing process according
to the current load of processors. Load-balancing algorithms are performed at
run-time; their execution must be fast and efficient.

16

element apphcatlon programs on distributed memory multxcomputers When

modes of a solution-adaptive finite element graph were evenly distributed to
processors by some mapping algorithms, according to the communication
_:-"-ﬁe*-x of the finite element graph, we can et a processor graph from the

=ph on seven processors. The corresponding processor graph of Figure 1 is
shown in Figure 2. In a processor graph, nodes represent the processors and edges

sepresent the communication needed among processors. The weights associated
with nodes and edges denote the computation and the communication costs
Chung & Liao, 1999, p.360). As all the nodes are homogeneous, they have the
sammc fnite computation cost, n, associated with them. The neighbor processors
communicate with each other through message passing. The weighted edge

“mwing the neighbor processors shows the normalized cost related with message

When a finite element graph is refined during run-time, it will result in

wac imbalance of processors. To balance the computational load of processors,
tue Cluster method first builds up clusters of processors. Based on clusters, the
£ooa load balancing information is calculated by the tree walking algorithm
WA (W, 1997, p. 173). According to the global load balancing information
#nc the current load distribution, a load transfer algorithm is performed to
Seance the compurational load of processors and minimize the communication

SESE SInong processors.

This cluster based load balancing algorithm is considered to be run at
sopicztion level which is independent of the lower layer protocols. As this load
ing process is platform independent, it can run on processors where the

ing network topology varies.

10 evaluate the performance of the proposed method, it has been
s=oiemented along with three other tree- based parallel load balancing methods,
“e Maximum Cost Spanning Tree Load Balancing (MCSTLB) method (Chung
% Lizo. 1999, p.360), Binary Tree Load Balancing (BTLB) method (Chung &
“ias. 1999, p.360) and Condensed Binary Tree Load Balancing (CBTLB)
sestod (Chung & Liao, 1999, p.360). The experimental results show that the

ssecusion dme and the number of process migration of an application program
wmcer 2 cluster- based load-balancing method is always shorter than those of the
gher methods

17

o

The Parallel Load Balancing Methods

The Maximum Cost Spanning Tree Load-Balancing (MCSTLB) Method

The main idea of the MCSTLB method (Chung & Liao, 1999, p.360) is to find
a maximum cost spanning tree from the processor graph that is obtained from the

initial partitioned finite element graph. The MCSTLB method can be divided
into the following four phases:

Phase 1: Obtain a processor graph G from the initial partition.

Phase 2: Use a similar Kruskals (Kruskal,, 1956, p. 48) algorithm to find a
maximum cost spanning tree T = (V, E) from G. There are many ways to
determine the shape of T. In this method, the shape of T is constructed as follows:

1. The processor with the largest degree in V is selected as the root of T.
2 For each nonterminal processor v in T, if {ul , ..., um } are the m children
of vand |ul | < [u2 | «.. < jJum |, then ul will be the leftmost child of v, u2

will be the second leftmost child of v, and so on, where |ui | is the degree of
uiandi=1, ..., m. If the depth of T is greater than logM, where M is the
number of processors, we will try to adjust the depth of T. The adjusted
method is first to find the longest path (from a terminal processor to
another terminal processor) of T. After the longest path is determined, the
middle processor of the path is selected as the root of the tree and the tree
is reconstructed according to the above construction process. If the depth
of the reconstructed tree is less than that of T, the reconstructed tree is the
desired tree. Otherwise, T is the desired tree. The purpose of the
adjustment is to reduce the load balancing steps among processors.

Phase 3: Calculate the global load balancing information and schedule the load
transfer sequence of processors by using the TWA (Wu, 1997, p. 173). Assume
that there are M processors in a tree and N nodes in a refined finite element
graph. We define N/M as the average weight of a processor. In the TWA method,
the quora and the load of each processor in a tree are calculated, where the quota
is the sum of the average weights of a processor and its children processors and
the load is the sum of the weights of a processor and its children processors. The
difference of the quota and the load of a processor is the number of nodes that a
processor should send to or receive from its parent. If the difference is negative, a
processor should send nodes to its parent. Otherwise, a processor should receive
nodes from its parent. According to the global load balancing information, a
schedule can be determined.

18

Phase 4: Perform load transfer (send/receive) based on the global load balancing
information, the schedule, and T. Assume that processor Pi needs to send m
nodes to processor Pj and let N denote the set of nodes in Pi thar are adjacent to
those of Pj. In order to keep the communication cost as low as possible, in the
‘oad transfer, nodes in N are transferred first. If |N| is less than m, then nodes
adiacent to those in N are transferred. This process is continued until the number
of nodes transferred to Pj is equal to m.

I%e Binary Tree Load Balancing (BTLB) Method

The BTLB method (Chung & Liao, 1999, p.360) is similar to the MCSTLB
method (Chung & Liao, 1999, p.360). The only difference between these two
methods is that the MCSTLB method is based on a maximum cost spanning tree
%0 balance the computational load of processors while the BTLB method is based
o 2 binary tree. The BTLB method can be divided into the following four phases:

Phase 1: Obuain a processor graph G from the initial partition.

Phase 2: Use a similar Kruskal’s algorithm to find a binary tree T = (V; E) from G,
woere Vo and E denote the processors and edges of T, respectively. The method to
Sesermine the shape of a binary tree is the same as that of the MCSTLB method.

Phase 3: Calculate the global load balancing information and schedule the load
samster sequence of processors by using the TWA.

Phase 4: Perform load transfer (send/receive) based on the global load balancing
sssormation, the schedule, and T. The load transfer method is the same as that of
w5 MCSTLB method.

"%e Condensed Binary Tree Load Balancing (CBTLB) Method

5 main idea of the CBTLB method (Chung & Liao, 1999, p.360) is to group
geocessors of the processor graph into metaprocessors. Each metaprocessor is a
Sspescube. The CBTLB method can be divided into the following five phases:

Phase 1: Obrain a processor graph G from the initial parrition.

Mase 2: Group processors of G into metaprocessors to obtain a condensed
sescessor graph Ge incrementally. The metaprocessors in Ge are constructed as

Sellows: First, a processor Pi with the smallest degree in G and a processor Pj that
% & m=i=hbor processor of Pi and has the smallest degree among those neighbor
pescessors of Pi are grouped into a metaprocessor. Then, the same construction is

19

-

applied to other ungrouped processors until there are no processors that can be
grouped into a hypercube. Repeat the grouping process to each metaprocessor
until there are no metaprocessors that can be grouped into a higher order
hypercube.

Phase 3: Find a binary tree T = (V, E) from Gc , where V and E denote the

metaprocessors and edges of T, respectively. The method of constructing a binary
tree is the same as that of the BTLB method.

Phase 4: Based on T, calculate the global load balancing information and schedule
the load transfer sequence by using a similar TWA method for metaprocessors. To
obtain the global load balancing information, the quota and the load of each
processor in a tree are calculated. The quota is defined as the sum of the average
weights of processors in a metaprocessor Ci and processors in children processors
of Ci. The load is defined as the sum of the weights of processors in a
metaprocessor Ci and processors in children metaprocessors of Ci. The difference
of the quota and the load of a metaprocessor is the number of nodes that a
metaprocessor should send to or receive from its parent metaprocessor. After
calculating the global load balancing information, the schedule is determined as
follows. Assume that m is the number of nodes that a metaprocessor Ci needs to
send to another metaprocessor Cj . We have the following two cases:

4L Case I: If the weight of Ci is less than m, the schedule of these two
metaprocessors is postponed until the weight of Ci is greater than or equal
to m.

23 Case 2: If the weight of Ci is greater than or equal to m, a schedule can be
made between processors of Ci and Cj . Assume that AD] denotes the set
of processors in Ci that are adjacent to those in Cj . If the sum of the
weights of processors in AD]J is less than m, a schedule is made to transfer
nodes of processors in Ci to processors in ADJ such that the weights of
processors in AD] is greater than or equal to m. If the sum of the weights
of processors in AD]J is greater than or equal to m, a schedule is made to
send m nodes from processors in AD] to those in C.

Phase 5: Perform load transfer (send/receive) among metaprocessors based on the
global load balancing information, the schedule, and T. The load transfer method
is similar to that of the BTLB method. After performing the load transfer process
among metaprocessors, a dimension exchange method (DEM) is performed to
balance the computational load of processors in metaprocessors.

20

Cluster-Based Load Balancing Method

The main idea of the cluster-based method is to construct an arrangement of
processors, where the processors are combined into clusters. After the
comstruction of processor cluster, the load information for each processor is
collected and the load balancing algorithm is performed in such a manner that
the processor can balance their load by transferring minimum number of
peocesses and the overall load balancing time is also improved.

Phase 1: Cluster construction.

. Step 1: Divide N number of processors into N/3 number of clusters. In a
cluster there might be one or two or three processors. In each case the
cluster might be constructed as following:

L Case 1: If a cluster has three nodes, then one of them is called the parent
node, and the other two are called the left and right child, respectively.

y 2 Case 2: If a cluster has two nodes, then one of them is called the parent

node, and the other is called the left child.
3 Case 3: If a cluster has only one node, then it is called the parent node.

'= cach cluster the children nodes send their state information to the parent node
when they try to balance the load.

If there is only one cluster, then go to Phase 3.
. S‘fp 2: Rearrange three local clusters to form a large cluster. In this large cluster,
¢ node acts as parent and other two as left and right child respectively.

I=is process of constructing a large cluster is continued until there is only one

ST CIISTET.

Phzse 2: Load Estimartion.

Sach processor in the system has varying number of processes and each process
%as warying amount of load. To find the average weight or Quota of a processor
' to first calculate the sum of loads of all processors and then we must

e total sum by the number of processors of the system. Thus we obtain
5 quora for each processor and from the quota we calculate the high threshold
22 low threshold value for each processor, where

H=h threshold= quota + x (where x = 5% of quota)

Low threshold= quota — x (where x = 5% of quota)

r'd

ow 2 processor's state is defined as follows:

21

1. Case 1: The processor is in a normal state if its load is greater than the low

threshold and less than the high threshold.

2. Case 2: The processor is in underloaded state if its load is below the low
threshold

3 Case 3: The processor is in overloaded state if its load is above the high
threshold

Phase 3: Load distribution

® Step 1: In this level, for each cluster, the cluster load and the cluster quota
are calculated. The cluster load is defined as the sum of loads of each
processor in a cluster, which is not in normal state, and the cluster quota
is defined as the sum of the quota for each processor in the cluster, which
is not in normal state. From the cluster quota, the high threshold and low
threshold is also calculated for the cluster. Now depending on the cluster
load and threshold values of the cluster, the following two cases may
occur:

1. Case 1: If the cluster load is greater than the low threshold and less than the
high threshold, then it is possible to balance the load of the cluster
internally. For each member node of the cluster, the difference of quota
and load is the number of processes that a node should send or receive
from other nodes. If the difference is negative, a node should transfer the
load, otherwise it should receive loads.

2. Case 2: If the cluster load is greater than the high threshold value or less
than the low threshold value, then load balancing is not possible within the
cluster. In this case the parent will contain the cluster load information.

If the load of all clusters in this level is balanced, then the load distribution
process will be terminated. Otherwise step 1 should be repeated until 2 higher
level large cluster exists.

° Step 2: When the largest cluster has been reached, the cluster load should
be distributed among the members of the cluster, which is not in the
normal state. For each member node of the cluster, the difference of
quota and load is the number of processes that a node should send or
receive from other nodes. If the difference is negative, a node should
transfer load; otherwise it should receive loads. Then, each cluster of the
next lower level distributes the load among the processors of that cluster
in the same way.

22

1his process of load distribution is repeated until any lower level cluster exists.

Experimental results

This section compares the performance of the load-balancing methods by
_:‘-.‘:Z‘;l\.l’l[ll'lg the algorithm with some simulation programs. The criteria used to
svaluate the performance are execution time and the number of processes to be
migrated to balance the system load.

Comparison of execution time of different load balancing methods

" 5e execution time of different load balancing methods, with 7, 15, 25, 30, and
40 processors are shown in Table-1. From Table-1, it is evident that among
WMOSTLB, BTLB and CBTLB method, the execution time of CBTLB method is
Semer than the other two. This is because the CBTLB method can reduce the size
o 2 wree with a large ratio so that the overheads to do the load transfer among the
setaprocessors are less than those of the MCSTLB and BTLB method. Thus it
can reduce the load transfer time efficiently. We also observe that the execution
=me for the Cluster method is less than that of the CBTLB method. This is
Secause the CBTLB method does not try to balance the load within a
meszprocessor after forming the cluster. As a result a metaprocessor, which can be
Salanced locally, is grouped into a higher level hypercube. This makes fruitless
seocess wransfer possible and thus it will take more time to balance the load.
T housh in the Cluster methods, grouping is performed in each refinement, it
sales less ime to balance the system load.

Cemeparison of the number of process migration of different methods

"%e sumbers of processes to be migrated in different load balancing methods,

W 5.7, 10, 15, 20, 25, 30, 35, 40 and 45 processors are shown in Table 2.
Condlusion

C\Sesent types of load-balancing algorithm for solution-adaptive finite element
sopiicztion program on distributed memory multicomputers were proposed.

T hese 2re MICSTLB method, the BTLB method, the CBTLB method, and the
_wsser method. In MCSTLB method, BTLB method, and CBTLB method, a
Wecal tree (2 maximum cost spanning tree for MCSTLB method, a binary tree

%or BTLB method, and a condensed binary tree for CBTLB method) is
Ssmssructed from a processor graph. Based on the tree structure and the current
ac of the system, the existing method has been trying to balance the system
lad Bur in those methods, the static nature of the logical tree makes a huge

23

number of process migrations which consume not only time but also the
communication network bandwidth.

In this paper, a new, improved group based method has been proposed to
balance the load among the sites of a distributed memory multicomputer system
to overcome the problems associated with the previous methods. In this method,
the processors have been grouped so that the members of a group can try to
balance their load within the group without knowing the states of the other
processors belonging to a different group. Otherwise, when balancing the load
within the group is not possible, this group tries to balance the load in a large
group. Thus, in this method a process is migrated only when it finds its suitable
destinarion. If we consider load balancing without grouping the processors in a
cluster, then a huge number of messages have to be transferred among all the
processors to balance their loads, as every processor will try to balance its load
with every other processor. If we consider clusters consisting of two processors
other than considering three, again a huge number of message passing will be
required to balance the system load. So the discussion concludes that the
proposed method requires fewer process migrations and less execution time than
the existing methods.

To evaluate the performance of the existing load balancing methods and
the proposed one, the algorithms are implemented with some simulation
programs. Two criteria to do so are (i) execution time and (ii) the number of
process migration of different algorithms required for an application program is
used for performance evaluation. The experiment result shows that the execution
time and number of process to be migrated of the proposed method is better than
that of the existing methods.

References

Angus, LG, Fox, G.C,, Kim, J.S., & Walker, D.W. (1990). Solving Problems on
Concurrent Processors, vol. 2. Englewood Cliffs, N.J.: Prentice Hall.

Aykanat, C., Ozguner, F, Martin, S., & Doraivelu, S.M. (1987). Parallelization
of a Finite Element Application Program on a Hypercube Multiprocessor.
Hypercube Multiprocessor, pp. 662-673.

Barnard, S.T., & Simon, H.D. (1994, April). Fast Multilevel Implementation of
Recursive Spectral Bisection for Partitioning Uns tructured Problems. Concurrency:
Practice and Experience, vol. 6, no. 2, pp. 101- 117,

24

Semmard. ST, & Simon, H.D. (1995, February). A Parallel Implementation of
Wioisievel Recursive Spectral Bisection for Application to Adaptive Unstructured
Weshes. Proc. Seventh SIAM Conf. Parallel Processing for Scientific Computing, pp.

£ 632, San Francisco.

_seme. Y.C, & Liao, C.J. (1999). Tree-Based Parallel Load Balancing Methods
“or Solution-Adaptive Finite Element Graphs on Distributed Memory
Wiscomputer. [EEE Transaction on Parallel and Distributed Systems, vol. 10, No.
& gp. 360-370.

Sec=. E. Ramanujam, J., & Sadayappan, P. (1990). Task Allocation onto a
:_:_T'.'f_L_JD\. by Recursive Mincut Bipartitioning. /. Parallel and Distributed
Cemesusing, vol. 10, pp. 35-44.

';_:—: ing \Tetwork Partitions. Pmc 191*/9 IEEE Design Automation Conf pp-

5-181.

Sox. C., Johnson, M., Lyzenga, G., Otto, S., Salman, J., & Walker, D.W. (1988).
\sizing Problems on Concurrent Processors, vol. 1. Englewood Cliffs, N.]J.: Prentice

Garey, MR, & Johnson, D.S. (1979). Computers and Intractability, A Guide to

Tieory of NP-Completeness. San Francisco: Freeman.

Gilbert, LR, & Zmijewski, E.(1987). A Parallel Graph Partitioning Algorithm
“or 2 Message-Passing Multiprocessor. [zl J. Parallel Programming, vol. 16, no. 6,
pp. 427-449, 1987.

Gilbert, J.R., Miller, G.L., & Teng, S.H. .(1995). Geometric Mesh Partitioning:
implementation and Experiments. Proc. Ninth Intl Parallel Processing Symp.,
Santa Barbara, Calif., pp. 418-427.

Hendrickson, B., & Leland, R. (1995). An Improved Spectral Graph Partitioning
Algorithm for Mapping Parallel Computations. SIAM J. Scientific Computing,
vol. 16, no. 2, pp. 452-469.

Hendrickson, B., & Leland, R. (1995). "An Multilevel Algorithm for Partitioning
Graphs," Proc. Supercomputing ‘95, Dec. 1995.

Karypis, G., & Kumar, V. (1995). Multilevel k-way Partitioning Scheme for
[rregular Graphs. Technical Report 95-064, Dept. of Computer Science, Univ. of

25

Minnesota, Minneapolis.

Karypis, G., & Kumar, V. (1995). MeTiS—Unstructured Graph Partitioning and
Spares Matrix Ordering System. Univ. of Minnesota.

Kernigham, B.W., & Lin, S.(1970, February). An Efficient Heuristic Procedure
for Partitioning Graphs. Bell Systems Technology J., vol. 49, no. 2, pp. 292-370.

Kruskal,].B. (1056). On the Shortest Spanning Subtree of a Graph and the
Traveling Salseman Problem. Proc. AMS, vol. 7, pp. 48-50.

Simon, H.D. (1991). Partitioning of Unstructured Problems for Parallel
Processing. Computing Systems in Eng., vol. 2, nos. 2/3, pp. 135- 148.

Williams, R.D. (1990). DIME: Distributed Irregular Mesh Environment.
California Inst. of Technology.

Wu, M.Y. (1997, February). On Runtime Parallel Scheduling for Processor Load
Balancing, JEEE Trans. Parallel and Distributed Systems, vol. 8, no. 2, pp. 173-
186.

Williams, R.D. (1991, October). Performance of Dynamic Load Balancing
Algorithms for Unstructured Mesh Calculations,” Concurrency: Practice and
Experience, vol. 3, no. 5, pp. 457-481.

i Zﬂﬁ%f’é’mﬁé’%ﬁ’m@%ﬁﬁﬁ{%’
Methods 7 15 25 0= 408
MCSTLS 1.550549 1.500549 | 1.500549 1.500549 1.554396 :
BTLB 1.5-60549 1.500549 1.500549. 1.500549 i 1.500549 :
CBTLB 1.103846 1.10549“ 1.100000 1.154396 | 1.100000 i
Cluster 0.659340 0.692308 | 0.714286 _! 0.714286 i 0.714286 ‘

WW‘WW m
o 3 di ba ;)
7 ' ///’/ - -

e
%fﬁ -//i/

10 2050595 - 15 50 - =255 L esal = 45

278 | 440 | 719 | 1270|1841 [2370 |3113 | 3550 | 4135|4562

301 | 509 | 824 | 14602156 2937 | 2156 | 4068 | 4810 4204

432 | 782 1389 | 2286 | 3509 |4426 | 5556 | 6617 | 7355 8126 |

112 | 166 | 277 | 312 | 464 | 494 | 577 | 601 | 720 |1223

gare 1: A partition of 21-node finite element graph on 7 processors.

27

