

East West University

Software product Line (SPL) Feature Tree Analysis Tool

By

Md. Iearul Islam

&

Hanufa Zaman

A project submitted in partial fulfillment for the degree of B.Sc. in

Computer Science and Engineering

In the

Faculty of Science and Engineering

 Department of Computer Science and Engineering

 January 2016

Declaration

We hereby declare that this submission is our own work and that to the best of our knowledge

and belief it contains neither material nor facts previously published or written by another

person. Further, it does not contain material or facts which to a substantial extent has been

accepted for the award of any degree of a university or any other institution of tertiary education

except where an acknowledgement.

(Hanufa Zaman)

(MD. Iearul Islam)

i

Letter of Acceptance

The project entitled “Software product Line Feature Tree Analysis Tool” submitted by
MD. Iearul Islam (ID: 2011-3-60-023), Hanufa Zaman (ID: 2011-3-60-002), to Department of

Computer Science and Engineering, East West University, Dhaka, Bangladesh is accepted by the

department in partial fulfillment of requirements for the Award of the Degree of Bachelor of

Science in Computer Science and Engineering on January, 2016

Board of Examiners

Dr. Shamim H. Ripon

Assistant Professor and Chairperson,

Department of Computer Science and Engineering,

East West University, Dhaka, Bangladesh

Ii

Acknowledgement

First of all thanks to our Supervisor Dr. Shamim H Ripon for providing us this opportunity to

test our skill in the best possible manner. He enlightened, encouraged and provided us with

ingenuity to transform our vision into reality.

This project would not be possible without the help of our project supervisor, Dr. Shamim H

Ripon, Associate Professor and Chairperson, Department of Computer Science and Engineering,

East West University. He helps us to understand all the matters easily which make us to create

this project. We would like to express our sincere and deep regards to him.

Lastly, we both are really thankful to Almighty ALLAH. So at the end deliberately we want to

pay tribute to our parents. We call them “Our Heroes, Our Mentors”. These are the people that

ALLAH has used to discover nature and deepen our academic career.

iii

TABLE OF CONTENTS

Contents Page No

Abstract 6

1 Introduction 7

 1.1 Introduction and Motivation 7

 1.2 Objectives 8

 1.3 Contribution 8

 1.4 Outline 9

2 Background

 2.1 Software Product Line 10

 2.2 Feature Model 11

 2.3 DOT 12

3 Logical Representation of Feature Model

 3.1 Feature Tree Representation 13

 3.2 Feature Modeling Notation 13

 3.2.1 Basic Feature Models 14

 3.2.1.1 Mandatory 14

 3.2.1.2 Optional 15

 3.2.1.3 Alternative 15

 3.2.1.4 Optional Alternative 16

 3.2.1.5 Or 16

 3.2.1.6 Optional Or 17

 3.2.2 Example of Feature Tree 18

 3.2.3 Cardinality Based Feature Models 18

 3.2.4 Extended Feature Models 18

 3.3 Feature Analysis 19

 3.3.1 Feature Tree Format 19

 3.4 Functional Decomposition 20

4 Tool Implementation

 4.1 Technical Feature 21

 4.2 Overall Steps of the implementation 22

 4.3 Implementation of each Component 24

5 User Manual

 5.1 Process Overview 26

 5.2 Work Flow 27

 5.2.1 Configure your workspace 27

 5.2.2 Create Project 27

 5.2.3 Add Features and Manage Logical Condition 28

 5.2.4 View Project and Take Necessary Features 28

 5.2.5 Get Graphical Representation 29

6 Conclusion

 6.1 Strength of this System 30

 6.2 Drawback of the System 30

 6.3 Future work 30

 References 31

Appendix 32

iv

List of Figures

Figure Name Page No

Figure 3.1: Mandatory 14

Figure 3.2: Alternative 15

Figure 3.3: Optional Alternative 16

Figure 3.4: Or 16

Figure 3.5: Optional Or 17

Figure 3.6: Feature Tree Representation with the help of Logical notations 18

Figure 3.2.2: Feature Tree Representation with the help of Logical notations 16

Figure 4.1 Flow Chart Diagram For Create a New Project 22

Figure 4.2 Flow Chart Diagram to Make Customized Featured Tree 23

Figure 4.3 Database for Variants 24

Figure 4.4 Condition to Show Mandatory and Optional 24

Figure 4.5 Conditions for Or Statement 25

Figure 4.6 Function to view a complete project 25

Figure 5.1 Create Project 27

Figure 5.2 Add Features and Manage Logical Condition 28

Figure 5.3 View Project and Take Necessary Features 28

Figure 5.4 Full Graph of a Family Product 29

Figure 5.5 Customize Graph 29

v

1 | P a g e

Abstract

The concept of a software product line (SPL) is to promise about approaching for increasing

planned reusability in industry. Feature models are enable for planning and strategic decisions

both in architectural and in component development. Feature models contribute to efficiency and

structure of various software development activities. Feature models have a tree structure, with

features forming nodes of the tree. The arcs and groupings of features represent feature

variability. There are six different types of feature groups: mandatory, alternative, or,

optional, optional alternative and optional or. The logical representation provides a precise and

rigorous formal interpretation of the feature diagrams. Software product lines (PLs) present a

solid approach in large scale reuse. Due to the PLs’ inherit complexity, many PL methods use the

notion of “features” to support requirements analysis and domain modeling. The approach makes
use of extensions in the feature modeling techniques and adopts plug-in architectures as a means

of mapping feature structures and at the same time satisfying the demanded PL variability and

flexibility.

2 | P a g e

Chapter 1

Introduction

1.1 Introduction and Motivation

The report introduces the overall description of “SPL Feature Tree Analysis Tool”. Software
Product Line (SPL) is a set of software-intensive systems sharing a common, managed set of

features that satisfy the specific needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed way. It will explain the Feature Tree

by the rules of Logical representation. Software product lines centralize upon the idea of

designing and implementing a family of systems to produce qualitative applications in a domain,

promote large scale reuse and reduce development costs. [2] Features are abstract concepts

effectively supporting communication among diverse stakeholders of a product line, and

therefore, it is natural and intuitive for people to express commonality and variability of product

lines in terms of features. Also, it has been recognized that the information codified by a feature

model is most critical for developing reusable software assets. [3] Software product lines (PLs)

replace the various separately-developed systems of a domain. Thus PLs embed at least the

additive complexity present in each of these systems, posing a challenge in their development

and demanding extensive variability. Additionally, PLs must follow all principles of modern

software, being flexible, extendible and maintainable. In order to keep a balance between these

requirements and virtues, PLs must adhere to a high level of abstraction: alone the variability and

size of PLs impose the use of explicit domain modeling techniques and the development of a

solid architecture. [2]

3 | P a g e

1.2 Objectives

Based on the logical rules, the concept of a feature is introduced. A formalized definition of a

feature in the software field is given in a logical unit of behavior that is specified by a set of

functional and quality requirements. A feature represents an aspect valuable to the customer. The

main objectives of Software Product Lines (SPL) and the Feature Model Analysis Tools are

given bellow:

 Develop a tool to represent feature Tree

 Represent the logical relation of the features

 Create customized tree based on user selection

 Graphically represent both full and customized tree.

 This tool can represent a logical tree by using internal logical conditions for a large

family product.

 Using 6 logical rules from this family product it can select as the user require for and it

can provide a customized graphical tree.

 It can manage the variability of Product Line. It can guide to follow the Product Line. It

can improve the communication between the system and users.

1.3 Contribution

The aim of this chapter is to provide a comprehensive description of the notion of variability

modeling in the context of software product line engineering and to give an overview of the

techniques proposed for variability modeling. Product line can be modeled in many different

ways based on different viewpoints. For the problem space, user goals and objectives, required

quality attributes, and product usage contexts are typically modeled in product line engineering.

Most of the properties of SPL feature tree modeling have been worked properly. Though there

are some drawbacks in our system. In this system we implement the sides that are give bellow

 A full tree of a family product can be given input and it also can provide

graphical representation of this product.

 By following originating logical rules it can select feature and give a

customized graphical representation.

4 | P a g e

1.4 Outline

Chapter 2: In this chapter we will glimpse the background that is about Software Product Line,

Feature Model and Dot.

Chapter 3: Here the Logical Representation of Feature Model will be chronicled by the Logical

representation of Features though the six logical rules and Feature analysis.

Chapter 4: Our Tool Implementation will be elucidated by the overall steps of the

implementation through the flowchart and the implementation of each component.

Chapter 5: It is all about the user Manual of the whole system.

Chapter 6: The rest of the things of the report will be represented in this chapter. That is all about

the conclusion part of this paper and we will also discuss the achievement from this project and

the future work with this project to develop it more.

Chapter 7: Last but not list that is the guidance of reference and the codes full of appendix.

5 | P a g e

Chapter 2

Background

2.1 Software Product Line

Software product lines, or software product line development, refer to software engineering

methods, tools and techniques for creating a collection of similar software systems from a shared

set of software assets using a common means of production. In, a definition of a software product

line is given as “a set of software-intensive systems sharing a common, manages set of features

that satisfy the specific needs of a particular market segment or mission and that are development

from a common set of core assets in a prescribed way”.[4]

Actually, Software product line (SPL) is a software intensive system sharing a common and

managed set of features that satisfy the needs of particular market segment or mission and that

are developed from a set of core assets in a particular market segment or mission and that are

developed from a set of core assets in a prescribed way [5]. Product line technology is a way of

improving the software development lifecycle and reuse by providing facilities to reuse the

model of the system families, it is possible to increase the productivity and decrease the possible

errors significantly. [6] The main idea of software product line is to explicitly identify all the

activities which are common to all members of the family as well as which are different and then

arrange them in a model. This implies a huge model which will help the stakeholders to be able

to trace any design choices and variability decisions as well. Finally, the derivation of the

product is done by selecting the required variants from the model and configuring them

according to product requirements. Manufacturers have long employed analogous engineering

techniques to create a product line of similar products using a common factory that assembles

and configures parts designed to be reused across the product line. For example, automotive

manufacturers can create unique variations of one car model using a single pool of carefully

designed parts and factory specifically designed to configure and assemble those parts. The

6 | P a g e

characteristic that distinguishes software product lines from previous efforts is predictive versus

opportunistic software reuse. Rather than put general software components into a library in the

hope that opportunities for reuse will arise, software product lines only call for software artifacts

to be created when reuse is predicted in one or more products in a well defined product line.

Recent advances in the software product line filed have demonstrated that narrow and strategic

application of these concepts can yield order of magnitude improvements in software

engineering capability. The result is often a discontinuous jump in competitive business

advantage, similar to that seen when manufacturers adopt mass production and mass

customization paradigms.

While early software product line methods at the genesis of the field provided the best software

engineering improvement metrics seen in four decades, the last generation of software product

line methods and tools are exhibiting even greater improvements. New generation methods are

extending benefits beyond product creation into maintenance and evolution, lowering the overall

complexity of product line development, increasing the scalability of product line practice with

orders of magnitude less time, cost and effort. Domain and application engineering are the two

main phases of SPL development. [7]

2.2 Feature Model

In software development, a feature model is a compact representation of all the products of the

Software Product Line (SPL) in terms of feature. [4] Feature models are visually represented by

means of feature diagrams. Feature models are widely used during the whole product line

development process and are commonly used as input to produce other assets such as documents,

architecture definition, or pieces of code. [8]

A SPL is a family of related programs. When the units of program construction are features-

increments in program functionality or development-every program in an SPL is identified by a

unique and legal combination of features, and vice versa. Feature models were first introduced in

the Feature-Oriented Domain Analysis (FODA) method by Kang in 1990. Since then, feature

modeling has been widely adopted by the software product line community and a number of

extensions have been proposed.

7 | P a g e

A key technical innovation of software product-line is the use of feature to distinguish product-

line members. A feature is an increment in program functionality. A particular product-line

member is defined by a unique combination of features. The set of all legal feature combinations

defines the set of product-line members. Feature models define features and their usage

constrains in product-lines. Current methodologies organize features into a tree, called a feature

diagram (FD), which is used to declaratively specify product –line members. Relationships

among FDs and grammars, and FDs and formal models/logic programming have been noted in

the past, but the potential of their integration is not yet fully realized.

2.3 DOT Graph (graph description language)

DOT is a plain text graph description language. It is a simple way of describing graphs that both

humans and computer programs can use. DOT graphs are typically files that end with the .gv (or

.dot) extension. The .gv extension is preferred in cases where there could be confusion with the

.dot file extension used by early (pre-2007) versions of Microsoft word. [9]

Various programs can process DOT files. Some like OmniGraffle, dot, neato, twopi, circo, fdp,

and tred will read a DOT file and render it in graphical form. Others, like gvpr, gc, acyclic,

ccomps, sccmap, and tred, will a DOT file and perform calculations on the represented graph.

Finally, others, like GVedit, KGraphEditor, lefty, dotty, and grappa provide an interactive

interface. Most programs are part of the Grapviz package or use it internally.

8 | P a g e

Chapter 3

Logic Representation of Feature Model

3.1 Feature Tree Representation

A feature model is a compact representation of all the products of the Software Product

Line (SPL) in terms of "features". Feature models are visually represented by means of feature

diagrams. Feature models are widely used during the whole product line development process

and are commonly used as input to produce other assets such as documents, architecture

definition, or pieces of code.

3.2 Feature modeling Notation

Current feature modeling notations may be divided into three main groups, namely:

 Basic feature models

 Cardinality-based feature models

 Extended feature models

https://en.wikipedia.org/wiki/Software_Product_Line
https://en.wikipedia.org/wiki/Software_Product_Line

9 | P a g e

3.2.1 Basic feature models

A Feature Model (FM) is a hierarchical arranged set of features. It represents all possible

products of an SPL (Software Product Line) in a single model. Every Feature is an increment in

product functionality. The complete feature tree of CAD domain is illustrated. It can be used in

different stages of development. Though A FM is a tree like structure so it consists of relations

between a parent feature and its child features, also cross-tree constrains that are typically

inclusion or exclusion statements of the form “if a feature F is included, then feature X must also
be included”. [10] The relation between a parent (variation point) features and its child feature

(variants) are categorized as follows:

3.2.1.1 Mandatory

A child feature is said to be mandatory when it is required to appear when the parent

feature appears. For instance, it is mandatory to have a special platform for Android mobile

phone. A mandatory feature is included if its parent feature is included.

 Figure 3.1: Mandatory

10 | P a g e

3.2.1.2 Optional

A child feature is said to be optional when it can or not appear when the parent features

appears. For instance, it is optional to have pdf reader software in the mobile phone. An optional

feature may or may not be included if its parent is included.

Figure 1.2: Optional

3.2.1.3 Alternative

 A set of child features are said to be alternative when only one child feature can be

selected when the parent feature appears. For instance a Gamer cannot select both Automatic

and Manual for car control during car selection. One and only one feature from a set of

alternative features are included when parent feature is included.

Figure 3.2: Alternative

11 | P a g e

3.2.1.4 Optional Alternative

One feature from a set of alternative features may or may not be included if parent

included. One feature from a set of alternative features may or may not be included if parent

included.

Figure 3.3: Optional Alternative

3.1.3.5 Or

A set of child features are said to have an or-relation with their parent when one or more

sub features can be selected when the parent feature appears. For instance, the engine of a car

can be electric, gasoline or both at the same time. At least one from a set of feature is included

when parent is included.

Figure 3.4: Or

12 | P a g e

3.2.1.6 Optional or

One or more optional feature may be included if the parent is included. One or more

optional feature may or may not be included if the parent is included.

Figure 3.5: Optional Or

A feature model can be considered as a graph consists of a set of sub graphs. Each sub

graph is created separately by defining a relationship between the variation point (denoted as vi)

and the variants (vi.j) by using the expressions. The complexity of a graph construction lies in the

definition of dependencies among variants. When there is a relationship between cross-tree (or

cross hierarchy) variants (or variation points) we denote it as a dependency. Typically

dependencies are either inclusion or exclusion: if there is a dependency between p and q, then p

is included then q must be included (or excluded). Dependencies are drawn by dotted lines. [10]

In addition to the parental relationships between features, cross-tree constraints are allowed.

The most common are:

 A requires B – The selection of A in a product implies the selection of B.

 A excludes B – A and B cannot be part of the same product.

13 | P a g e

3.2.2 Example of a Feature Tree

As an example, the figure below illustrates how feature models can be used to specify and build

configurable on-line shopping systems. The software of each application is determined by the

features that it provides. The root feature (i.e. E-Shop) identifies the SPL. Every shopping system

implements a catalogue, payment modules, security policies and optionally a search tool. E-

shops must implement a high or standard security policy (choose one), and can provide different

payment modules: bank transfer, credit card or both of them. Additionally, a cross-tree constraint

forces shopping systems including the credit card payment module to implement a high security

policy. [10]

Figure 3.6: Feature Tree Representation with the help of Logical notations

3.2.3 Cardinality-based feature models

Some authors propose extending basic feature models with UML-like multiplicities of the

form [n, m] with n being the lower bound and m the upper bound. These are used to limit the

number of sub-features that can be part of a product whenever the parent is selected.

If the upper bound is m the feature can be cloned as many times as we want (as long as the other

constraints are respected). This notation is useful for products extensible with an arbitrary

number of components.

3.2.4 Extended feature models

Others suggest adding extra-functional information to the features using "attributes".

These are mainly composed of a name, a domain, and a value.

https://en.wikipedia.org/wiki/Unified_Modeling_Language

14 | P a g e

3.3 Feature Analysis

A feature tree is a way to look at planned product features hierarchically, so that it can be

quickly understood the relationships among product features that have specified. Feature Trees

are high-level models organizing features into feature groups, capturing the entire scope of a

project into a single model. A feature consists of one or more logically related system

capabilities that provide value to a user and are described by a set of functional requirements.

Many business analysts use features as a way to describe the scope of a project. However, a

simple list does not readily show the size and complexity of various features. Nor does quickly

skimming a feature list easily reveal the full scope of a project. A feature tree is a visual analysis

model that organizes a set of features in a format that makes them easy to understand.

3.3.1 Feature Tree Format

The structure of feature trees is based on fishbone diagrams or Ishikawa diagrams, which

are commonly used to organize information into logical groupings based on relationships.

Fishbone diagrams are typically used to model cause-and-effect relationships, but feature trees

use the same format to organize the planned features of a software solution.

A feature tree can show up to three levels of features, commonly called level 1 (L1), level 2 (L2),

and level 3 (L3). L2 features are sub features of L1 features, and L3 features are sub features of

L2 features. Below L3 lie individual requirements. A feature tree does not necessarily need to

have three levels of features; if the solution and features are simple, there might be just L1

features and their more detailed functional requirements.

Features have an ideal abstraction level for communication and discussion with stakeholders

about how the product really needs to be valued. Features sometimes come in lists like a backlog

or in tables or are sometimes visually structured, these are the feature trees. In general there are

two types of feature trees:

 Trees to decompose the product into different levels of features. They are visualized as a

fishbone diagram or as a mind map or as story maps. They show a hierarchy and help to

structure features into groups and visualize dependencies.

 Trees focusing on the development axis (feature vector): these trees grow from the stem to

the leaves.

15 | P a g e

3.4 Functional Decomposition

Feature trees show all of the planned product features at once, giving a quick view of the

solution's breadth of functionality. Organizing the features in this fashion makes it easy to

identify missing and unnecessary features. The feature tree provides a functional decomposition

of the solution for use throughout all phases of the project, including organization of the

requirements, planning the work around the requirements, and bounding of the scope of work.

Feature trees provide a much richer view of features than a simple list can show.

16 | P a g e

Chapter 4

Tool Representation

4.1 Technical Feature

I. Programming Language: C and PHP

II. Programming Method: Recursive Algorithm of Graph Traverse

III. Design: HTML5, CSS3, JavaScript

IV. Using Frameworks: Codeigniter 2.2.6

V. Graph Visualization Software: graphviz (dot tools).

17 | P a g e

4.2 Overall steps of the implementation

Figure 4.1 Flow Chart Diagram For Create a New Project

18 | P a g e

Figure 4.2 Flow Chart Diagram to Make Customized Featured Tree

19 | P a g e

4.3 Implementation of each component

Figure 4.3 Databases for Variants

Figure 4.4 Condition to Show Mandatory and Optional

20 | P a g e

Figure 4.5 Conditions for Or Statement

Figure 4.6 Function to view a complete project

21 | P a g e

Chapter 5

User Manual

5.1 Process Overview

To use this system we need a PHP5 supported hosting services. XAMPP is one of the

best localhost services. For online use we can maintain any online hosting service. To make

graphical view we need dot program which is provided by Graphviz.

 Sequence for using the software to manage functions:

1. Configure your workspace

2. Create a Project

3. Add Features

4. Managing Logical Conditions

5. View Project

6. Take Necessary Features

7. Print Graphical Representation

22 | P a g e

5.2 WorkFlow

 Here we describe step by step the procedure to use the tools. How to create the database.

How to add a project and how to get the customize graphical view etc.

5.2.1 Configure your workspace

1. Install PHP5 in your web host server.

2. Install Graphviz software on that server and add dot program path on default

environment variable path.

3. Put all source files on root folder.

4. Add the database on phpmyadmin mysql database.

5. Configure database username and password with system.

 5.2.2 Create Project

Figure 5.1 Create Project

 Click Add project give a project title then press the submit button. Now you get a

new project.

23 | P a g e

5.2.3 Add Features and Manage Logical Condition

Figure 5.2 Add Features and Manage Logical Condition

Add a feature and add its child’s and select the logical condition with mother feature.

5.2.4 View Project and Take Necessary Features

Figure 5.3 View Project and Take Necessary Features

Click on view button beside on project that you need. Checkmark on your require

features what you want to get with your project.

24 | P a g e

5.2.5 Get Graphical Representation

Click on Full Graph but for the full family product graphical view and submit

button for your customized graph.

Figure 5.4 Full Graph of a Family Product

Figure 5.5 Customize Graph

25 | P a g e

Chapter 6

Conclusion and Future Work

As large as the family product remains we can represent it in a graphical view and also it can be

represented by the logical rules which can create a customized tree and its graphical image.

6.1 Strength of this System

 It can work with any number of features.

 As the term of level increase as much as it can so that the system can work properly.

 It can provide both the Logical and Graphical image.

 As much as the family product remains the system can represent it properly.

 The system is fully dynamic so anyone can add a new project without any programming

knowledge.

6.2 Drawback of the System

 It cannot express internal dependency

 Multiple types of relation without mandatory and optional cannot be implemented on

child from same mother variant.

6.3 Future Work

In future we want to work with this project. We want to improve this system. There are some

features we want to add though the system, they are given below

 We will append internal dependency between features of different mother variants.

 In future we will contrivance all type of logical relation between features of same mother

tree.

26 | P a g e

References

1. http://ceur-ws.org/Vol-509/paper_9.pdf

2. https://swk-www.informatik.uni-hamburg.de/~riebisch/publ/FArM_NODe.pdf

3. http://www.springer.com/cda/content/document/cda_downloaddocument/9783642365829

-c1.pdf

4. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The description logic handbook: theory, implementation, and

application. Cambridge University Press, New York, NY, USA, 2003.

5. Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.

Addison-Wesley Professional, 3
rd

 edition, August 2001.

6. David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortes. Automated reasoning on

feature models. In Proceedings of the 17
th

 international conference on Advanced

Information Systems Engineering, CAiSE’05, pages491-503, Berlin, Heidelberg, 2005.

Spring-verlag.

7. Daniel Beradi. Using dls to reason on uml class diagrams. In In Proc. Workshop on

Applications of Description Logics, pages1-11, 2002.

8. Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods.

Tools and applications. ACM Press/Addision-Wesley Publishing Co., New York, NY,

USA, 2000.

9. DOT Graph (graph description language)

http://en.wikipedia.org/wiki/DOT_(graph_description_language)

10. https://en.wikipedia.org/wiki/Feature_model

http://ceur-ws.org/Vol-509/paper_9.pdf
https://swk-www.informatik.uni-hamburg.de/~riebisch/publ/FArM_NODe.pdf
http://en.wikipedia.org/wiki/DOT_\(graph_description_language\)

27 | P a g e

Appendix

1. <?php if (! defined('BASEPATH')) exit('No direct script access allowed');

2.

3. class Projects extends CZ_Controller{

4.

5. /**

6. *

7. * @copyright Copyright (c) 2016.

8. * @author Md Iearul Islam and Hanufa Zaman

9. * @version 1.0.2

10. * @Last Update 11/29/2015

11. *

12. */

13. function __construct()

14. {

15. parent::__construct();

16. }

17.

18. function index(){

19. $data['projects'] = $this->CoreZ_IT->get('projects')->result();

20. $data['message'] = $this->session->flashdata('message');

21. $data['message_error'] = (validation_errors()) ? validation_errors() : $this-

>session->flashdata('message_error');

22. $data['page_title'] = 'All Projects';

23. $this->CoreZ_IT->_render_backend('index', $data);

24. }

To view the variant list with parent from database.

25. function variants($url = NULL){

26. if(empty($url)){

27. $this->session->set_flashdata('message_error','Project Not Exists.');

28. redirect('projects','refresh');

29. }

30. $where = array(

31. 'url' => $url

32.);

33. $data['project'] = $this->CoreZ_IT->get_where('projects', $where)->row();

34. if(empty($data['project']->url)){

35. $this->session->set_flashdata('message_error','Project Not Exists.');

28 | P a g e

36. redirect('projects','refresh');

37. }

38. $where = array('project_url' => $url);

39. $variants = $this->CoreZ_IT->get_where('variants', $where)->result();

40. $data['variants'] = array();

41. foreach($variants as $variant){

42. $data['variants'][$variant->url] = $variant;

43. }

44. $data['url'] = $url;

45. $data['message'] = $this->session->flashdata('message');

46. $data['message_error'] = (validation_errors()) ? validation_errors() : $this-

>session->flashdata('message_error');

47. $data['page_title'] = 'All Varients';

48. $this->CoreZ_IT->_render_backend('variants', $data);

49. }

50. function add_variants($url = NULL){

51. if(empty($url)){

52. $this->session->set_flashdata('message_error','Project Not Exists.');

53. redirect('projects','refresh');

54. }

55. $where = array(

56. 'url' => $url

57.);

58. $data['project'] = $this->CoreZ_IT->get_where('projects', $where)->row();

59. if(empty($data['project']->url)){

60. $this->session->set_flashdata('message_error','Project Not Exists.');

61. redirect('projects','refresh');

62. }

63. $where = array('project_url' => $url);

64. $this->form_validation->set_rules('title', 'Title', 'required');

65. if($this->form_validation->run() == true)

66. {

67. $url_var = $this->CoreZ_IT->url_check($this->input->post('title'), 'variants');

68. $condition = $this->input->post('condition');

69. $values = array(

70. 'title' => $this->input->post('title'),

71. 'url' => $url_var,

72. 'condition' => $condition,

73. 'project_url' => $url

29 | P a g e

74.);

75. $this->CoreZ_IT->insert('variants',$values);

76. $mother = $url_var;

77. $childs = $this->input->post('child');

78. foreach($childs as $child){

79. $url_var = $this->CoreZ_IT->url_check($child, 'variants');

80. $values = array(

81. 'title' => $child,

82. 'url' => $url_var,

83. 'mother' => $mother,

84. 'project_url' => $url,

85. 'mother_condition' => $condition

86.);

87. $this->CoreZ_IT->insert('variants',$values);

88. }

89. $this->session->set_flashdata('message','Variants Successfully Added.');

90. redirect('projects/variants/'.$url, 'refresh');

91. }

92. $data['title'] = array(

93. 'class' => 'form-control',

94. 'name' => 'title',

95. 'type' => 'text',

96. 'value' => $this->form_validation->set_value('title'),

97.);

98. $data['child'] = array(

99. 'class' => 'form-control',

100. 'name' => 'child[]',

101. 'type' => 'text'

102.);

103. $data['condition_value'] = array(

104. 'Mandatory & Optional' => 'Mandatory & Optional',

105. 'Alternative' => 'Alternative',

106. 'Optional Alternative' => 'Optional Alternative',

107. 'Or' => 'Or',

108. 'Optional Or' => 'Optional Or'

109.);

110. $data['condition_name'] = 'condition';

111. $data['condition_selected'] = $this->form_validation-

>set_value('condition', 'Mandatory & Optional');

30 | P a g e

112. $data['dropdown_class'] = 'class="form-control"';

113. $data['url'] = $url;

114. $data['message'] = $this->session->flashdata('message');

115. $data['message_error'] = (validation_errors()) ? validation_errors() : $this-

>session->flashdata('message_error');

116. $data['page_title'] = 'projects';

117. $this->CoreZ_IT->_render_backend('add_variants', $data);

118. }

119. function edit_variants($url = NULL){

120. if(empty($url)){

121. $this->session->set_flashdata('message_error','Project Not Exists.');

122. redirect('projects','refresh');

123. }

124. $where = array(

125. 'url' => $url

126.);

127. $data['variant'] = $this->CoreZ_IT->get_where('variants', $where)->row();

128. if(empty($data['variant']->url)){

129. $this->session->set_flashdata('message_error','Variant Not Exists.');

130. redirect('projects','refresh');

131. }

132. $this->form_validation->set_rules('title', 'Title', 'required');

133. if($this->form_validation->run() == true)

134. {

135. $condition = $this->input->post('condition');

136. $values = array(

137. 'title' => $this->input->post('title'),

138. 'condition' => $condition

139.);

140. if($data['variant']->mother_condition == 'Mandatory & Optional'){

141. $values['mother_type'] = ($this->input-

>post('mother_type') == 'Mandatory' ? 1 : 0);

142. }

143. $this->CoreZ_IT->update('variants', $values, $where);

144. $values = array(

145. 'mother_condition' => $condition

146.);

147. $this->CoreZ_IT->update('variants', $values, array('mother' => $url));

148. $mother = $url;

31 | P a g e

149. $childs = $this->input->post('child');

150. foreach($childs as $child){

151. if(!empty($child)){

152. $url_var = $this->CoreZ_IT->url_check($child, 'variants');

153. $values = array(

154. 'title' => $child,

155. 'url' => $url_var,

156. 'mother' => $mother,

157. 'project_url' => $data['variant']->project_url,

158. 'mother_condition' => $condition

159.);

160. $this->CoreZ_IT->insert('variants',$values);

161. }

162. }

163. $this->session->set_flashdata('message','Variants Successfully Added.');

164. redirect('projects/variants/'.$data['variant']->project_url, 'refresh');

165. }

166. $data['title'] = array(

167. 'class' => 'form-control',

168. 'name' => 'title',

169. 'type' => 'text',

170. 'value' => $this->form_validation->set_value('title', $data['variant']-

>title),

171.);

172. $data['condition_value'] = array(

173. 'Mandatory & Optional' => 'Mandatory & Optional',

174. 'Alternative' => 'Alternative',

175. 'Optional Alternative' => 'Optional Alternative',

176. 'Or' => 'Or',

177. 'Optional Or' => 'Optional Or'

178.);

179. $data['condition_name'] = 'condition';

180. $data['condition_selected'] = $this->form_validation-

>set_value('condition', $data['variant']->condition);

181.

182. $data['status_value'] = array(

183. 'Mandatory' => 'Mandatory',

184. 'Optional' => 'Optional'

185.);

32 | P a g e

186. $data['status_name'] = 'mother_type';

187. $data['status_selected'] = $this->form_validation-

>set_value('mother_type', ($data['variant']->mother_type == 1 ? 'Mandatory': 'Optional'));

188. $data['dropdown_class'] = 'class="form-control"';

189. $data['child'] = array(

190. 'class' => 'form-control',

191. 'name' => 'child[]',

192. 'type' => 'text'

193.);

194. $data['url'] = $url;

195. $where = array(

196. 'mother' => $url

197.);

198. $data['child_variants'] = $this->CoreZ_IT->get_where('variants', $where)-

>result();

199. $data['message'] = $this->session->flashdata('message');

200. $data['message_error'] = (validation_errors()) ? validation_errors() : $this-

>session->flashdata('message_error');

201. $data['page_title'] = 'projects';

202. $this->CoreZ_IT->_render_backend('edit_variants', $data);

203. }

To delete existing variant

204. function deleteVariant($url = NULL){

205. $where = array('url' => $url);

206. $data['variant'] = $this->CoreZ_IT->get_where('variants', $where)->row();

207. if(empty($data['variant'])){

208. $this->session->set_flashdata('message_error', 'Variant not Exists.');

209. redirect('projects', 'refresh');

210. }

211. $this->CoreZ_IT->delete('variants', $where);

212. $this->session->set_flashdata('message', 'Variant has been deleted.');

213. redirect('projects/variants/'.$data['variant']->project_url, 'refresh');

214. }

To add new project

215. function add(){

216. $this->form_validation->set_rules('title', 'Title', 'required');

217. if($this->form_validation->run() == true)

33 | P a g e

218. {

219. $url = $this->CoreZ_IT->url_check($this->input->post('title'), 'projects');

220. $values = array(

221. 'title' => $this->input->post('title'),

222. 'url' => $url

223.);

224. $this->CoreZ_IT->insert('projects',$values);

225. $this->session->set_flashdata('message','Project Successfully Added.');

226. redirect('projects', 'refresh');

227. }

228. $data['title'] = array(

229. 'class' => 'form-control',

230. 'name' => 'title',

231. 'type' => 'text',

232. 'value' => $this->form_validation->set_value('title'),

233.);

234. $data['message'] = $this->session->flashdata('message');

235. $data['message_error'] = (validation_errors()) ? validation_errors() : $this-

>session->flashdata('message_error');

236. $data['page_title'] = 'projects';

237. $this->CoreZ_IT->_render_backend('add', $data);

238. }

To edit variant child and their conditions

239. function edit($url = NULL){

240. if(empty($url)){

241. $this->session->set_flashdata('message_error','Project Not Exists.');

242. redirect('projects','refresh');

243. }

244. $where = array(

245. 'url' => $url

246.);

247. $data['project'] = $this->CoreZ_IT->get_where('projects', $where)->row();

248. if(empty($data['project']->url)){

249. $this->session->set_flashdata('message_error','Project Not Exists.');

250. redirect('projects','refresh');

251. }

252. $this->form_validation->set_rules('title', 'Title', 'required');

253. if($this->form_validation->run() == true)

34 | P a g e

254. {

255. $values = array(

256. 'title' => $this->input->post('title')

257.);

258.

259. $this->CoreZ_IT->update('projects', $values, $where);

260. $this->session->set_flashdata('message','Project Successfully

Updated.');

261. redirect('projects','refresh');

262. }

263. $data['title'] = array(

264. 'class' => 'form-control',

265. 'name' => 'title',

266. 'type' => 'text',

267. 'value' => $this->form_validation->set_value('title', $data['project']-

>title),

268.);

269. $data['message'] = $this->session->flashdata('message');

270. $data['message_error'] = (validation_errors()) ? validation_errors() : $this-

>session->flashdata('message_error');

271. $data['page_title'] = 'projects';

272. $this->CoreZ_IT->_render_backend('edit', $data);

273. }

To Show Full Project with all features

274. function view($url = NULL){

275. if(empty($url)){

276. $this->session->set_flashdata('message_error','Project Not Exists.');

277. redirect('projects','refresh');

278. }

279. $where = array(

280. 'url' => $url

281.);

282. $data['project'] = $this->CoreZ_IT->get_where('projects', $where)->row();

283. if(empty($data['project']->url)){

284. $this->session->set_flashdata('message_error','Project Not Exists.');

285. redirect('projects','refresh');

286. }

287. $where = array(

35 | P a g e

288. 'project_url' => $url

289.);

290. $variants = $this->CoreZ_IT->get_where('variants', $where)->result();

291. $data['variants'] = array();

292. $data['child_variants'] = array();

293. foreach($variants as $variant){

294. if(!empty($variant->mother)){

295. $data['child_variants'][$variant->mother][] = $variant;

296. }else{

297. $data['variants'][] = $variant;

298. }

299. }

300. $data['message'] = $this->session->flashdata('message');

301. $data['message_error'] = (validation_errors()) ? validation_errors() : $this->session-

>flashdata('message_error');

302. $data['page_title'] = 'projects';

303. $this->CoreZ_IT->_render_backend('view', $data);

304. }

To make Customize Graphical Image

305. private function child_variant($mother, $mother_condition, $child_variants){

306. $text = '';

307. if(!empty($child_variants[$mother])){

308. $childs = $this->input->post($mother);

309. if(!empty($childs)){

310. if($mother_condition == 'Alternative' || $mother_condition == 'Optional

Alternative'){

311. $text .= str_replace('-', '_', $mother).' -> '.str_replace('-

', '_', $childs).';';

312. $text .= $this->child_variant($childs,$child_variants[$mother][$childs]-

>condition, $child_variants);

313. }else{

314. foreach($childs as $child){

315. $text .= str_replace('-', '_', $mother).' -> '.str_replace('-

', '_', $child).';';

316. $text .= $this->child_variant($child,$child_variants[$mother][$child]-

>condition, $child_variants);

317. }

318. }

36 | P a g e

319.

320. }

321. }

322. return $text;

323. }

To make Full Graphical Image

324. private function child_variant2($mother, $child_variants){

325. $text = '';

326. if(!empty($child_variants[$mother])){

327. $childs = $child_variants[$mother];

328. foreach($childs as $key => $child){

329. $text .= str_replace('-', '_', $mother).' -> '.str_replace('-

', '_', $key).';';

330. $text .= $this->child_variant2($key, $child_variants);

331. }

332. }

333.

334. return $text;

335. }

To Select necessary feature from family product and download graphical Image

336. public function submit($url = NULL){

337. $this->load->helper('download');

338. if(empty($url)){

339. $this->session->set_flashdata('message_error','Project Not Exists.');

340. redirect('projects','refresh');

341. }

342. $where = array(

343. 'url' => $url

344.);

345. $project = $this->CoreZ_IT->get_where('projects', $where)->row();

346. if(empty($project->url)){

347. $this->session->set_flashdata('message_error','Project Not Exists.');

348. redirect('projects','refresh');

349. }

350. $where = array(

351. 'project_url' => $url

352.);

37 | P a g e

353. $vars = $this->CoreZ_IT->get_where('variants', $where)->result();

354. $variants = array();

355. $child_variants = array();

356. foreach($vars as $variant){

357. if(!empty($variant->mother)){

358. $child_variants[$variant->mother][$variant->url] = $variant;

359. }else{

360. $variants[] = $variant;

361. }

362. }

363. $text = ' digraph G {';

364. foreach($variants as $variant){

365. $text .= $this->child_variant($variant->url, $variant->condition, $child_variants);

366. }

367. $text .= '}';

368. $file = 'abid.dot';

369. file_put_contents($file, $text);

370. exec("check.exe");

371. $result = file_get_contents('new.png');

372. force_download($project->title.'.png', $result);

373. }

To download Customize Graphical Image

374. public function full_graph($url = NULL){

375. $this->load->helper('download');

376. if(empty($url)){

377. $this->session->set_flashdata('message_error','Project Not Exists.');

378. redirect('projects','refresh');

379. }

380. $where = array(

381. 'url' => $url

382.);

383. $project = $this->CoreZ_IT->get_where('projects', $where)->row();

384. if(empty($project->url)){

385. $this->session->set_flashdata('message_error','Project Not Exists.');

386. redirect('projects','refresh');

387. }

388. $where = array(

38 | P a g e

389. 'project_url' => $url

390.);

391. $vars = $this->CoreZ_IT->get_where('variants', $where)->result();

392. $variants = array();

393. $child_variants = array();

394. foreach($vars as $variant){

395. if(!empty($variant->mother)){

396. $child_variants[$variant->mother][$variant->url] = $variant;

397. }else{

398. $variants[] = $variant;

399. }

400. }

401. $text = ' digraph G {';

402. foreach($variants as $variant){

403. $text .= $this->child_variant2($variant->url, $child_variants);

404. }

405. $text .= '}';

406. $file = 'abid.dot';

407. file_put_contents($file, $text);

408. exec("check.exe");

409. $result = file_get_contents('new.png');

410. force_download($project->title.'_full.png', $result);

411. }

412.

413. }

	3.2.1 Basic feature models
	3.2.4 Extended feature models
	3.4 Functional Decomposition

